• Title/Summary/Keyword: Lysine-Energy Interaction

Search Result 7, Processing Time 0.025 seconds

EFFECTS OF LYSINE AND ENERGY LEVELS ON GROWTH PERFORMANCE THIGH MUSCLE COMPOSITION AND UTILIZATION OF NUTRIENTS IN BROILER CHICKS

  • Park, B.C.;Han, I.K.;Choi, Y.J.;Yun, C.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.129-138
    • /
    • 1992
  • The effects of dietary levels of lysine and energy on growth performance, the content of DNA, RNA and protein in liver, thigh muscle composition and nutrient utilization in broiler chicks were investigated in an experiment involvies with 2 levels of dietary energy : 3,200 (2900) 2,900 (2700) kcal ME/kg) and 6 levels of lysine : 0.6(0.5), 0.8(0.7), 1.0(0.9), 1.2(1.1), 1.4(1.3), and 1.6(1.5)% was carried out. A total number of 384 male broiler chicks was used for a period of 7 weeks. Body weight gain of 1.0(0.9)% lysine level group was significantly (p < 0.01) higher than that of any other groups. Interaction between lysine and energy in the feed intake was observed (p < 0.05). Present data indicate that the content of DNA in liver tissues was significantly (p < 0.05) different by the levels of lysine, namely, 1.0(0.9)% or 1.2(1.1)% lysine level groups showed higher content than other groups (p < 0.01). Dietary levels of 1.2(1.1)% or 1.6(1.5)% lysine groups showed the highest protein content in thigh muscle tissues than that of any other groups (p < 0.05). Interaction between energy and lysine in the content of protein of thigh muscle tissues was shown (p < 0.01). The level of 0.6% lysine group showed the highest fat content in thigh muscle tissues than any other groups. Interaction between lysine and energy in the content of crude ash and crude fat of thigh muscle tissues was observed (p < 0.01). Apparent amino acid availability of arginine, glycine and threonine (p < 0.01), phenylalanine (p < 0.05) were significantly affected by the levels of lysine and interaction between lysine and energy was found only in arginine (p < 0.01).

Effects of Dietary Metabolizable Energy and Lysine on CarcassCharacteristics and Meat Quality in Arbor Acres Broilers

  • Tang, M.Y.;Ma, Q.G.;Chen, X.D.;Ji, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1865-1873
    • /
    • 2007
  • An experiment was performed to evaluate the effects of dietary metabolizable energy (ME) and lysine on carcass characteristics and meat quality in Arbor Acres (AA) broilers from 1 to 56 days of age. A total of 2,970 1-d-old male broiler chicks were randomly allocated to nine dietary treatments (three ME levels in combination with three lysine levels), and dietary ME and lysine concentrations were formulated by varying corn, soybean meal, tallow, and L-lysine sulfate concentrations. Live body weight (BW), carcass weight (CW), dressing percent, breast muscle weight (BMW), yield of breast muscle, muscle color (CIE L*, a*, and b*), pH values 45 min and 24 h postmortem ($pH_{45}$, and $pH_{24}$), meat shear force value (SFV), and water loss rate (WLR) were evaluated. Results showed that live body weight and dressing percent increased (p<0.05) as dietary energy increased. Higher dietary lysine content improved breast muscle weight. Neither carcass weight nor yield of breast muscle was affected by dietary energy or lysine content. Higher ME increased the b* value (p = 0.067) and $pH_{24}$ value (p<0.05), whereas it decreased SFV (p<0.05) and WLR (p = 0.06). Only water loss rate was influenced (p<0.01) by dietary lysine, which was higher in broilers from the high lysine diet as compared to those from medium or low lysine diets. The $pH_{45}$ value and L* value of breast muscle were not affected by ME or lysine. Significant interaction of dietary ME and lysine was found on a* value of breast muscle. These results indicated that dietary ME and lysine had important effects on breast muscle growth and meat quality, however their effects were different. Different concentrations of dietary ME and lysine might be considered to improve meat quality.

Effects of Dietary Lysine and Energy Levels on Growth Performance and Apparent Total Tract Digestibility of Nutrients in Weanling Pigs

  • Kim, Y.W.;Ingale, S.L.;Kim, J.S.;Kim, K.H.;Chae, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1256-1267
    • /
    • 2011
  • Two experiments were conducted to determine the effects of dietary lysine and energy level on performance and apparent total tract digestibility (ATTD) of nutrients in weanling pigs. In Exp. 1, a total of 288 weaned pigs (initial BW $5.77{\pm}0.85\;kg$) were randomly allotted to 4 treatments (4 replicates per treatment with 18 pigs in each replicate). Experimental diets were fed in the 3 phases: phase I (d 0 to 7), phase II (d 8 to 14) and phase III (d 15 to 28). Isocalorific diets (3,450 kcal/kg) with incremental lysine levels (Phase I: 1.51, 1.61, 1.71 and 1.81; Phase II: 1.35, 1.46, 1.56 and 1.66; Phase III: 1.18, 1.28, 1.39 and 1.49% lysine respectively for T1, T2, T3 and T4) were used as treatments. An increase in the dietary lysine levels linearly improved (p<0.05) the ADG and G:F during phases I, II and III as well as overall study period. The ATTD of DM (d 7 and 28) and CP (d 7, 14 and 28) were linearly improved (p<0.05) with increasing dietary lysine levels. ATTD of ash, Ca and P were not affected by dietary lysine level. In Exp. 2, 64 weanling pigs (initial BW $4.79{\pm}0.79\;kg$) were randomly allotted to 4 treatments (4 replicates per treatment with 4 pigs in each replicate) in a $2{\times}2$ factorial arrangement on the basis of BW. Effects of two levels of energy (high, 3,450 or low, 3,350 kcal/kg) and lysine (high or low; 1.70 or 1.50, 1.55 or 1.35 and 1.40 or 1.20% in phase I, II and III diets, respectively) on performance and ATTD of nutrients were investigated. High energy and lysine diets improved ADG (p<0.05) in pigs during phase I, II and III and overall period (p<0.001), while G:F increased (p<0.05) during phase I and overall period. Pigs fed high lysine diets consumed more (p<0.05) feed during phase III and overall period. Additionally, pigs fed high energy diets had greater (p<0.05) ATTD of GE (d 7 and 14), CP (d 7 and 28) and DM (d 28); whereas, pigs fed high lysine diets had greater (p<0.05) ATTD of GE and CP during d 7, 14 and 28. ATTD of ash, Ca and P remained unaffected (p>0.05) by dietary energy and lysine level. However, there was no energy${\times}$lysine interaction for any of the measured variables. Results obtained in present study suggested that high energy and lysine level improve the growth performance and ATTD of nutrients in weanling pigs.

Ileal Amino Acid Digestibility of Broken Rice Fed to Postweaned Piglets with or without Multicarbohydrase and Phytase Supplementation

  • Dadalt, J.C.;Gallardo, C.;Polycarpo, G.V.;Budino, F.E.L.;Rogiewicz, A.;Berto, D.A.;Trindade Neto, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1483-1489
    • /
    • 2016
  • Most of amino acid (AA) digestibility values for feed ingredients are obtained using pigs cannulated in the distal ileum. The ileal-cannulated pig model uses pigs older than six weeks due to difficulties related to implanting the T-cannula in distal ileum of younger pigs and complications during the post-surgical recovery. However, to properly formulate the diet of weaned pigs, the nutritive value of feed ingredients should be determined with younger pigs. Thus, 25 weaned pigs were used to determine the apparent total tract digestibility (ATTD) of nutrients, energy, and apparent ileal digestibility (AID) and standardized ileal digestibility (SID) ileal AA digestibility of broken rice (BR), with or without multicarbohydrase (MC) and phytase (Phy) supplementation. Piglets were weaned at 23 d of age and individually housed in digestibility cages until 45 d of age. The trial consisted of 7 d of adaptation to the experimental diets and 3 d of excreta (feces and urine) collection. Ileal digesta was collected at slaughter (about 6 weeks of age). A completely randomized experimental design was used to determine the effects of MC and Phy. Reference diets (RD, 5% casein) was replaced by 30% of BR with or without MC, Phy, or MC+Phy. The RD was used to quantify endogenous AA losses. BR with Phy supplied had increased the ATTD of dry matter (p<0.05) and SID of histidine (p = 0.05), arginine, leucine, lysine, valine, alanine, and proline (p<0.05). BR with MC had been increased digestible energy and protein and SID for histidine (p<0.05). There was no interaction between Phy and MC on the BR nutrient digestibilities. Standardized amino acid digestibilities of BR, without enzymes, were lower than those values reported in the literature. The MC and Phy improved the digestibility of some nutrients and energy of BR in post-weaned piglet diets.

Energy utilization, nutrient digestibility and bone quality of broiler chickens fed Tanzania-type diets in different forms with enzymes

  • Chang'a, Edwin Peter;Abdallh, Medani Eldow;Ahiwe, Emmanuel Uchenna;Al-Qahtani, Mohammed;Mbaga, Said;Iji, Paul Ade
    • Journal of Animal Science and Technology
    • /
    • v.61 no.4
    • /
    • pp.192-203
    • /
    • 2019
  • A study was conducted to determine the influence of feed form and microbial enzyme supplementation on energy utilization, bone quality, and amino acid and mineral digestibility of broiler chickens. Four hundred and eighty Ross 308, day-old broiler chickens were randomly assigned to eight diets formulated from commonly used ingredients in Tanzania. A 2 (pellet or mash) ${\times}$ 4 (control, Axtra XB, Quantum Blue (QB) and Axtra XB + QB enzyme) factorial array in a completely randomized design having six replicates per treatment (10 birds per replicate) was used. Birds were raised in climate-controlled rooms in a 3-phase; starter (0-10 days), grower (11-24 days) and finisher (25-35 days). Apparent metabolizable energy (AME), metabolizable energy intake, net energy of production, energy retained as protein (REp), and efficiency of metabolizable energy use for energy and protein retention were higher (p < 0.05) in birds fed pelleted diets. The AME and REp was higher (p < 0.05) with enzyme supplementation. Ash content, weight, length, width and breaking strength of tibia bones were highest (p < 0.05) in birds on pelleted diets. Tibia bone traits were improved (p < 0.05) when enzymes were included, particularly in a combination of QB and Axtra XB. However, potassium, magnesium, and zinc contents were highest (p < 0.05) when QB was supplemented. Digestibility of all amino acids was higher (p < 0.05) in birds supplied with pellets and with enzyme supplementation for most amino acids, except for serine. There was a positive interaction (p < 0.05) between feed form and enzymes on lysine and phenylalanine digestibility. Digestibility of Ca, P, K, S, Zn, and Fe was higher (p < 0.05) in birds fed pelleted diets, while those on mashed diets had higher (p < 0.05) digestibility of Cu and B. The digestibility of P, K, and Zn was highest (p < 0.001) when QB was added, while Ca, P, S, and B digestibility was highest when a combination of Axtra XB + QB was applied. Pelleted diets with or without enzymes improved energy utilization, digestibility of amino acids, and minerals, and increased bone strength in broiler chickens.

Synthesis of Au Nanoparticles Functionalized 1D α-MoO3 Nanobelts and Their Gas Sensing Properties

  • Wang, Liwei;Wang, Shaopeng;Fu, Hao;Wang, Yinghui;Yu, Kefu
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850115.1-1850115.10
    • /
    • 2018
  • A novel sensor material of Au nanoparticles (NPs) functionalized 1D ${\alpha}-MoO_3$ nanobelts (NBs) was fabricated by a facile lysine-assisted approach. The obtained $Au/{\alpha}-MoO_3$ product was characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray (EDX), and X-ray photoelectron spectra (XPS). Then, in order to investigate the gas sensing performances of our samples, a comparative gas sensing study was carried out on both the ${\alpha}-MoO_3$ NBs before and after Au NPs decoration by using ethanol vapor as the molecular probe. The results turned out that, after the functionalization of Au NPs, the sensor exhibited improved gas-sensing characteristics than the pure ${\alpha}-MoO_3$, such as response and recovery time, optimal operating temperature (OT) and excellent selectivity. Take for example 200 ppm of ethanol, the response/recovery times were 34 s/43 s and 5.7 s/10.5 s, respectively, while the optimal operating temperature (OT) was lower to $200^{\circ}C$ rather than $250^{\circ}C$. Besides, the functionalized sensor showed a higher response to ethanol at $200^{\circ}C$, and response was 1.6 times higher than the pure $MoO_3$. The mechanism of such improved sensing properties was interpreted, which might be attributed to the spillover effect of Au NPs and the electronic metal-support interaction.

Effect of cooling water and inverse lighting on short chain fatty acid and blood lipid of broiler chickens in closed poultry house during hot weather (혹서기 무창계사에서 육계의 혈액지질 및 짧은 사슬지방산에 관한 역전점등과 냉각수 효과)

  • Park, Sang-Oh;Park, Byung-Sung;Hwangbo, Jong;Choi, Hee-Chul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.31-43
    • /
    • 2014
  • This experiment evaluated the interaction effect of extreme heat diet(EHD), inverse lighting, and cool water on the growth performance of broiler chickens under extreme heat stress. There were 4 experimental groups (T1: EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cold water $9^{\circ}C$; T2: EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cold water $9^{\circ}C$; T3: EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cold water $14^{\circ}C$; T4: EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cold water $14^{\circ}C$), each group composed of 25 broilers and the experiment was repeated 3 times. EHD 1 contained soybean oil, molasses, methionine and lysine. EHD 2 contained all nutrients of EHD 1 and vitamin C additionally. As a result, T1 and T2 displayed higher body weight increase and diet intake compared to T3 and T4 (p<0.05). The weights of their liver and gizzard were similar but the weights of the thymus and bursa F were higher for T1 and T2 compared to that of T3 and T4 (p<0.05). It was observed that T1 and T2 displayed higher concentrations of blood triglyceride, total cholesterol, HDL-C and blood sugar compared to that of T3 and T4 but LDL-C level was higher for T3 and T4 compared to that of T1 and T2 (p<0.05). T1 and T2 displayed higher levels of immunity substances such as IgG, IgA and IgM compared to T3 and T4 but the blood level of corticosterone displayed to be lower for T1 and T2 compared to T3 and T4 (p<0.05). The T1 and T2 contained a higher amount of fecal lactobacillus compared to that of T3 and T4 but the T3 and T4 contained a higher amount of fecal E. coli, total aerobic bacteria, coliform bacteria compared to that of T1 and T2 (p<0.05). T1 and T2 displayed higher concentrations of cecal acetic acid, propionic acid and total short chain fatty acids compared to T3 and T4 but T3 and T4 displayed higher concentrations of butyric acid, isobutyric acid, valeric acid and isovaleric acid compared to T1 and T2 (p<0.05). These results have been observed that broiler chickens exposed to extreme heat stress with feeding EHD, inverse lighting and cold water would improve blood lipid, and elevate the production of immunity substance, beneficial microorganisms, and short chain fatty acids. This provision would also reduce the blood sugar consumption rate as energy sources and these effects will improve the growth performance of the broilers exposed to extreme heat.