• Title/Summary/Keyword: MC CS-CDMA

Search Result 5, Processing Time 0.018 seconds

Performance Analysis of Multicarrier Code Selection CDMA System for PAPR Reduction in Multipath Fading Channel (PAPR을 줄이기 위한 Multicarrier Code Select CDMA시스템의 다중 경로 페이딩 채널에서 성능 분석)

  • Ryu Kwan Woong;Park Yong Wan;Hong Een Kee;Kim Myovng Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1319-1332
    • /
    • 2004
  • Multicarrier direct sequence code-division multiple access CDMA(MC DS-CDMA) is an attractive technique for achieving high data rate transmission even if the potentially large peak-to-average power ratio(PAPR) is an important factor for its application. On the other hand, code select CDMA(CS-CDMA) is an attractive technique with constant amplitude transmission of multicode signal irregardless of subchannels by introducing code selection method. In this paper we propose a new multiple access scheme based on the combination of MC DS-CDMA and CS-CDMA. Proposed scheme, which we called MC CS-CDMA, includes the sutclasses of MC DS-CDMA and CS-CDMA as special cases. The performance of this system is investigated for multipath Sequency selective fading channel and maximal ratio combining with rake receiver. In addition the PAPR of proposed system is compare with that of both MC BS-CDMA and CS-CDMA. Simulation results show that proposed system improves PAPR reduction than MC DS-CDMA at the expense of the complexity of receiver and the number of available non. Also, the numerical result shows that the proposed system is better performance than MC DS-CDMA due to the increasing processing gain and the number of time diversity gain.

Performance Analysis of Multicarrier Code Select CDMA System for PAPR Reduction in Multipath Channels

  • Ryu, Kwan-Woong;Jin, Jiyu;Park, Yong-Wan;Choi, Jeong-Hee
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.11-19
    • /
    • 2009
  • Multicarrier direct sequence code division multiple access (MC DS-CDMA) is an attractive technique for achieving high data rate transmission. This is valid regardless of whether or not the potentially large peak-to-average power ratio (PAPR) is an important factor for its application. On the other hand, code select CDMA (CS-CDMA) is an attractive technique with constant amplitude transmission of multicode signal regardless of subchannels. This is achieved by introducing a code select method. In this paper, we propose a new multiple access scheme based on the combination of MC DS-CDMA and CS-CDMA. The proposed scheme, which we call MC CS-CDMA, includes as special cases the subclasses of MC DS-CDMA and CS-CDMA. This paper investigates the performance of these systems over a multipath frequency selective fading channel using a RAKE receiver with maximal ratio combiner. In addition, the PAPR of the proposed system is compared with that of both MC DS-CDMA and CS-CDMA. Simulation results demonstrate that the proposed system provides better PAPR reduction than MC DS-CDMA, at the expense of the complexity of the receiver and the number of available users. The numerical result demonstrates that the proposed system has better performance than MC DS-CDMA due to the increased processing gain and time diversity gain.

Sparse Index Multiple Access for Multi-Carrier Systems with Precoding

  • Choi, Jinho
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.439-445
    • /
    • 2016
  • In this paper, we consider subcarrier-index modulation (SIM) for precoded orthogonal frequency division multiplexing (OFDM) with a few activated subcarriers per user and its generalization to multi-carrier multiple access systems. The resulting multiple access is called sparse index multiple access (SIMA). SIMA can be considered as a combination of multi-carrier code division multiple access (MC-CDMA) and SIM. Thus, SIMA is able to exploit a path diversity gain by (random) spreading over multiple carriers as MC-CDMA. To detect multiple users' signals, a low-complexity detection method is proposed by exploiting the notion of compressive sensing (CS). The derived low-complexity detection method is based on the orthogonal matching pursuit (OMP) algorithm, which is one of greedy algorithms used to estimate sparse signals in CS. From simulation results, we can observe that SIMA can perform better than MC-CDMA when the ratio of the number of users to the number of multi-carrier is low.

A study on the Application of PB/MC-CDMA for IoT Services in Small Cell Environment (IoT 서비스를 위한 스몰셀 환경에서 PB/MC-CDMA 적용 방안에 대한 연구)

  • Lee, Kyu-Jin
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • In this paper, we introduce the PB/MC-CDMA (Partial Block/Multi-Carrier-Code Division Multiple Access) system to mitigate inter-cell interference (ICI) and enhance user capacity in the small cell environment. In 5G mobile communications, the number of devices connected to the network is expected to increase exponentially with the expansion of the IoT (Internet of Things) services. In addition, each device is expected to be required by the various data rates by their content types. In LTE/LTE-A, there are some limitations that large scale connectivity and supporting various data rates. Therefore, we introduce a PB/MC-CDMA physical layer system which is suitable for the small cell environment, and evaluate the performance in the multi cell environment which is affected by ICI. Through computer simulation results, we demonstrate the effectiveness of PB/MC-CDMA for the small cell environment.

A study on Scalable Video Coding Signals Transmission using inter-layer Differential OVSF code allocation scheme in MC-CDMA (MC-CDMA 기반의 SVC 전송 시스템에서 계층 간 차등 OVSF코드 할당 기법에 관한 연구)

  • Shin, Hyung-Song;Kim, Kyun-Tak;Lee, Kyu-Jin;Lee, Kye-San
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.49-55
    • /
    • 2016
  • This paper proposes an adaptive video signal transmission scheme in order to ensure the QoS (Quality of Service) of user requirements. SVC (Scalable Video Coding) is an effective transmission scheme, because that can transmit video signal according to the video layer's weight. However, in previous works, those adaptive transmission systems which are considered about the various channel environments and user requirements have not been insufficiently studied. So, we propose the SVC signal transmission using inter-layer differential OVSF code allocation scheme in MC-CDMA. The proposed scheme is able to obtain each layer signal's protection order and control the sub-block of MC-CDMA by feedback information from receiver. Therefore, our proposed scheme is possible to provide the video quality for each users according to variable channel environments. The simulation results demonstrate the enhancement of proposed system in terms of BER performance.