• Title/Summary/Keyword: MCL-PHA

Search Result 27, Processing Time 0.018 seconds

Molecular Structure of PCR Cloned PHA Synthase Genes of Pseudomonas putida KT2440 and Its Utilization for Medium-Chain Length Polyhydroxyalkanoate Production

  • Kim, Tae-Kwon;Shin, Hyun-Dong;Seo, Min-Cheol;Lee, Jin-Nam;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.182-190
    • /
    • 2003
  • A new phaC gene cluster encoding polyhydroxyalkanoate (PHA) synthase I PHA depolymerase, and PHA synthase II was cloned using the touchdown PCR method, from medium-chain length (mcl-) PHA-producing strain Pseudomonas putida KT2440. The molecular structure of the cloned phaCl gene was analyzed, and the phylogenic relationship was compared with other phaCl genes cloned from Pseudomonas species. The cloned phaCl gene was expressed in a recombinant E. coli to the similar level of PHA synthase in the parent strain P. putida KT2440, but no significant amount of mcl-PHA was accumulated. The isolated phaCl gene was re-introduced into the parent strain P. putida KT2440 to amplify the PHA synthase I activity, and the recombinant P. purida accumulated mcl-PHA more effectively, increasing from 26.6 to $43.5\%$. The monomer compositions of 3-hydroxylalkanoates in mcl-PHA were also modified significantly in the recombinant P. putida enforcing the cloned phaCl gene.

Isolation and Characteristics of Polyhydroxyalkanoates Producing Pseudomonas sp. MBEL21 (신규 Pseudomonas sp. MBEL21 균주의 Polyhydroxyalkanoates 생산 특성)

  • 최종일;이승환;이상엽
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.123-127
    • /
    • 2004
  • Pseudomonas sp. MBEL21 was newly isolated from soil samples and found to accumulate medium-chain-length Polyhydroxyalkanoates(MCL-PHAs) using oleic acid as a sole carbon source. Among the various nutrient limiting conditions examined, including nitrogen, sulfur and phosphorus, only phosphorus limitation supported the accumulation of MCL-PHAs up to 15 wt% of dry cell weight in flask cultures. MCL-PHAs produced by Pseudomonas sp. MBEL21 was mainly composed of 3-hydroxy-5-cis-tetradecenoate. Fed-batch culture of Pseudomonas sp. MBEL21 by novel feeding strategies based on cell growth charcteristics was carried out under phosphorus limitation using oleic acid as a sole carbon source. The final cell concentration and PHA content of 82 g/L and 28 wt%, respectively, were obtained. Furthermore, PHA consisted of MCL-hydroxyalkanoates and 3-hydroxybutyrate could be produced using olive oil as a sole carbon source.

Effects of Glucose and Acrylic acid Addition on the Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoates by Pseudomonas chlororaphis HS21 from Plant Oils (Pseudomonas chlororaphis HS21에 의한 식물유로부터 Medium-Chain-Length Polyhydroxyalkanoates 생합성이 미치는 포도당 및 아크릴산의 첨가 효과)

  • Chung Moon-Gyu;Yun Hye Sun;Kim Hyung Woo;Nam Jin Sik;Chung Chung Wook;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.225-231
    • /
    • 2005
  • The characteristics of cell growth and medium-chain-length polyhydroxyalkanoate (MCL-PHA) biosynthesis of Pseudomonas chlororaphis HS21 were investigated using plant oils as the carbon substrate. The organism was efficiently capable of utilizing plant oils, such as palm oil, corn oil, and sunflower oil, as the sole carbon source for growth and MCL-PHA production. When palm oil (5 g/L) was used as the carbon source, the cell growth and MCL-PHA accumulation of this organism occurred simultaneously, and a high dry cell weight (2.4 g/L) and MCL-PHA ($40.2\;mol{\%}$ of dry cell weight) was achieved after 30 hr of batch-fermentation. The repeating unit in the MCL-PHA produced from palm oil composed of 3-hydroxyhexanoate ($7.0\;mol{\%}$), 3-hydroxyoctanoate ($45.3\;mol{\%}$), 3-hydroxydecanoate ($39.0\;mol{\%}$), 3-hydroxydodecanoate ($6.8\;mol{\%}$), and 3-hydroxytetradecanoate ($1.9\;mol{\%}$), as determined by GC/MS. Even though glucose was a carbon substrate that support cell growth but not PHA production, the conversion rate of palm oil to PHA was significantly increased when glucose was fed as a cosubstrate, suggesting that bioconversion of some functionalized carbon substrates to related polymers in P chlororaphis HS21 could be enhanced by the co-feed of good carbon substrates for cell growth. In addition, the change of compositions of repeating units in MCL-PHAs synthesized from the plant oils was markedly affected by the supplementation of acrylic acid, an inhibitor of fatty acid ${\beta}-oxidation$. The addition of acrylic acid resulted in the increase of longer chain-length repeating units, such as 3-hydroxydodecanoate and 3-hydroxytetradecanoate, in the MCL-PHAs produced. Particularly, MCI-PHAs containing high amounts of unsaturated repeating units could be produced when sunflower oil and corn oil were used as the carbon substrate. These results suggested that the alteration of PHA synthesis pathway by acrylic acid addition can offer the opportunity to design new functional MCL-PHAs and other unusual polyesters that have unique physico-chemical properties.

In Vivo Analysis of fadB Homologous Enzymes Involved in Biosynthesis of Polyhydroxyalkanoates in Recombinant Escherichia coli (재조합 대장균에서 fadB 유사효소의 Polyhydroxyalkanoates 합성에 미치는 역할의 규명)

  • 최종일;박시재;이상엽
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.331-334
    • /
    • 2004
  • In vivo characterization of FadB homologous enzymes including PaaG, YdbU and YgfG for medium-chain-length (MCL) polyhydroxyalkanoate (PHA) biosynthesis was carried out in fadB mutant Escherichia coli. Previously, it was reported that amplification of FadB homologous enzymes such as PaaG and YdbU in fadB mutant E. coli resulted in enhanced biosynthesis of MCL-PHA by greater than two fold compared with control strain. In this study, we constructed paaG fadB double mutant E. coli WB114 and ydbU fadB double mutant E. coli WB115 to investigate the roles of PaaG and YdbU in biosynthesis of MCL-PHA. Inactivation of paaG and ydbU genes in fadB mutant E. coli harboring Pseudomonas sp. 61-3 phaC2 gene reduced the MCL-PHA production to 0.16 and 0.16 PHA g/L, respectively from 2 g/L of sodium decanoate, which are much lower than 0.43 PHA g/L obtained with fadB mutant E. coli WB101 harboring the phaC2 gene. Also, we identified new FadB homologous enzyme YgfG, and examined its roles by overexpression of ygfG and construction of ygfG fadB double mutant E. coli WB113.

Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates

  • Kim, Do-Young;Kim, Hyung-Woo;Chung, Moon-Gyu;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.87-97
    • /
    • 2007
  • Medium-chain-length polyhydroxyalkanoates (MCL-PHAs), which have constituents with a typical chain length of $C_{6}-C_{14}$, are polyesters that are synthesized and accumulated in a wide variety of Gram-negative bacteria, mainly pseudomonads. These biopolyesters are promising materials for various applications because they have useful mechanical properties and are biodegradable and biocompatible. The versatile metabolic capacity of some Pseudomonas spp. enables them to synthesize MCL-PHAs that contain various functional substituents; these MCL-PHAs are of great interest because these functional groups can improve the physical properties of the polymers, allowing the creation of tailor-made products. Moreover, some functional substituents can be modified by chemical reactions to obtain more useful groups that can extend the potential applications of MCL-PHAs as environmentally friendly polymers and functional biomaterials for use in biomedical fields. Although MCL-PHAs are water-insoluble, hydrophobic polymers, they can be degraded by microorganisms that produce extracellular MCL-PHA depolymerase. MCL-PHA-degraders are relatively uncommon in natural environments and, to date, only a limited number of MCL-PHA depolymerases have been investigated at the molecular level. All known MCL-PHA depolymerases share a highly significant similarity in amino acid sequences, as well as several enzymatic characteristics. This paper reviews recent advances in our knowledge of MCL-PHAs, with particular emphasis on the findings by our research group.

Cloning and Analysis of Medium-Chain-Length Poly(3-Hydroxyalkanoate) Depolymerase Gene of Pseudomonas luteola M13-4

  • Park, In-Jae;Rhee, Young-Ha;Cho, Nam-Young;Shin, Kwang-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1935-1939
    • /
    • 2006
  • The gene encoding the extracellular medium-chain-length poly(3-hydroxyalkanoate) (MCL-PHA) depolymerase of Pseudomonas luteola Ml3-4, $phaZ_{plu}$, was cloned and analyzed. It was found to be 849 bp, with a deduced protein of 282 amino acids, and was revealed to have a typical leader peptide at its N terminus. The amino acid sequence of $PhaZ_{plu}$ revealed relatively low identity (69 to 72%) with those of other Pseudomonas MCL-PHA depolymerases. In comparison with the amino acid sequences of all available MCL-PHA depolymerases, the depolymerase was found to consist of three domains in sequential order; signal peptide, an N-terminal substrate binding domain, and a catalytic domain, indicating that $PhaZ_{plu}$ belongs to the type IV depolymerases family. The enzyme also contained Asn as an oxyanion hole amino acid.

Swinging Effect of Salicylic Acid on the Accumulation of Polyhydroxyalkanoic Acid (PHA) in Pseudomonas aeruginosa BM114 Synthesizing Both MCL- and SCL-PHA

  • Rho, Jong-Kook;Choi, Mun-Hwan;Shim, Ji-Hoon;Lee, So-Young;Woo, Myeong-Ji;Ko, Bong-Sung;Chi, Ki-Whan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2018-2026
    • /
    • 2007
  • A bacterium, Pseudomonas aeruginosa BM114, capable of accumulating a blend of medium-chain-length (MCL)- and short-chain-length (SCL)-polyhydroxyalkanoic acid (PHA), was isolated. Salicylic acid (SA), without being metabolized, was found to specifically inhibit only the accumulation of MCL-PHA without affecting cell growth. An addition of 20 mM SA selectively inhibited the accumulation of MCL-PHA in decanoate-grown cells by 83% of the control content in one-step cultivation, where overall PHA accumulation was inhibited by only ${\sim}11%$. Typically, the molar monomer-unit ratio of the PHA for 25 mM decanoate-grown cells changed from 46:4:25:25 (=[3-hydroxybutyrate]:[3-hydroxycaproate]: [3-hydroxyoctanoate]:[3-hydroxydecanoate]) at 0 mM SA (dry cell wt, 1.97 g/l; PHA content, 48.6 wt%) to 91:1:4:4 at 20 mM SA (dry cell wt, 1.85 g/l; PHA content, 43.2 wt%). Thus, the stimulation of SCL-PHA accumulation was observed. Growth of P. aeruginosa BM114 on undecanoic acid also produced a PHA blend composed of 47.4% P(3HB-co-3-hydroxyvalerate) and 52.6% P(3-hydroxyheptanoate-co-3-hydroxynonanoate-co-3-hydroxyundecanoate). Similar to the case of even-carboxylic acids, SA inhibited the accumulation of only MCL-PHA, but stimulated the accumulation of SCL-PHA. For all medium-chain fatty acids tested, SA induced a stimulation of SCL-PHA accumulation in the BM114 strain. SA could thus be used to suppress only the formation of MCL-PHA in Pseudomonas spp. accumulating a blend of SCL-PHA and MCL-PHA.

Biosynthesis of Copolyesters Consisting of 3-Hydroxyvalerate and Medium-chain-length 3-hydroxyalkanoates by the Pseudomonas aeruginosa P-5 Strain (Pseudomonas aeruginosa P-5 균주로부터 3-Hydroxyvalerate와 Medium-chain-length 3-hydroxyalkanoates로 구성된 공중합체의 생합성)

  • Woo, Sang-Hee;Kim, Jae-Hee;Ni, Yu-Yang;Rhee, Young-Ha
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.200-206
    • /
    • 2012
  • A bacterial strain capable of synthesizing polyhydroxyalkanoates (PHAs) with an unusual pattern of monomer units was isolated from activated sludge using the enrichment culture technique. The organism, identified as Pseudomonas aeruginosa P-5, produced polyesters consisting of 3-hydroxyvalerate and medium-chain-length (MCL) 3-hydroxyalkanoate monomer units when $C_{-odd}$ alkanoic acids such as nonanoic acid and heptanoic acid were fed as the sole carbon source. Solvent fractionation experiments using chloroform and hexane revealed that the 3-hydroxyalkanoate monomer units in these polyesters were copolymerized. The molar concentration of 3-hydroxyvalerate in the polyesters produced were significantly elevated up to 26 mol% by adding 1.0 g/L valeric acid as the cosubstrate. These copolyesters were sticky with low degrees of crystallinity. The PHA synthase genes were cloned, and the deduced amino acid sequences were determined. P. aeruginosa P-5 possessed genes encoding MCL-PHA synthases (PhaC1 and PhaC2) but lacked the short-chain-length PHA synthase gene, suggesting that the MCL-PHA synthases from P. aeruginosa P-5 are uniquely active for polymerizing (R)-3-hydroxyvaleryl-CoA as well as MCL (R)-3-hydroxyacyl-CoAs.

Drug Release Characteristics of Biodegradable Polymers for Stent Coating (스텐트 코팅용 생분해성 고분자의 약물 방출 특성)

  • 강혜수;김진설;김동운;강병철;이봉희;김범수
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.107-110
    • /
    • 2003
  • Biodegradable polymers, poly(lactic-co-glycolic acid) (PLGA), poly(3-hydroxybutyrate) (PHB), and medium chain length polyhydroxyalkanoates (MCL-PHA) containing rose bengal (model drug) were coated onto the surface of stainless steel (stent materials) and their in vitro release characteristics were investigated. Drug release increased with; decreasing PLGA concentration, increasing rose bengal concentration, and Increasing dip-coating duration. The order of drug release from the polymer coating was: PHB > PLGA > MCL-PHA. These results suggest that drug release can be controlled by: changing the concentration and type of polymer, the drug concentration, and the dip-coating duration.

Biodegradation of Medium-chain-length Polyhydroxyalkanoates by Pseudomonas sp. RY-1 (Pseudomonas sp. RY-1에 의한 Medium-chain-length Polyhydroxyalkanoates의 생분해)

  • 류강은;김영백;양영기;이영하
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • Biodegradation of vanous medium-chain-length polyhydroxyalkanoates (MCL-PHAs) by an extracellular depolymerase system from Pseudomonas sp. RY-1 was investigated under laboratoly conditions. The degradation rate of the polymers was determined by quantitative clem zone technique, enzyme (turbidity) assay, and respirometry assay. Although the enzyme system secreted by Pscudomor~as sp. RY-1 was capable of degrading all MCL-PHAs tested. its secretion was influenced by the availability of secondary carbon sources. The rate of enzymatic degradation of MCL-PHAs was dependent upou the monomeric composition of the polyesters and reduced as the chain lengths of the monomer m t s in the polyesters increased. MCL-PHAs containing C-even monomer units showed faster degradation rate than MCL-PHAs containing C-odd monomer units. Respiration rates of MCL-PHAs with C-even monomer uuts were also much faster than those of MCL-PHAs with C-odd monomer units. The degmdation rate of MCL-PHAs bearing unsaturated substituents was faster than that of mcl-PHAs without functional substituents, which is suggesting the correlation between the degradation rate and the crystallinity of MCL-PHAs.

  • PDF