• Title/Summary/Keyword: MDO

Search Result 111, Processing Time 0.032 seconds

Web Services-based Multidisciplinary Design Optimization System (웹 서비스 기반 MDO 시스템)

  • Lee, Ho-Jun;Lee, Jae-Woo;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1121-1128
    • /
    • 2007
  • MDO(Multidisciplinary Design and Optimization) can be applied for design of complex systems such as aircraft and SLV(Space Launch Vehicle). MDO System can be an integrated environment or a system, which is for synthetic and instantaneous analysis and design optimization in various design fields. MDO System has to efficiently use and integrate distributed resources such as various analysis codes, optimization codes, CAD, DBMS, GUI, and etc. in heterogeneous environments. In this paper, we present Web Services-based MDO System that integrates resources for MDO using Globus Toolkit and provides organic autonomous execution using automation technique such as Workflow system and agent. And also, it provides collaborative design environment through web user interfaces.

Study on an Approximation Technique using MDO (MDO에서 적용가능한 근사기법의 활용에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3661-3666
    • /
    • 2015
  • The paper describes the integrated design system using MDO and approximation technique. In MDO related research, final target is an integrated and automated MDO framework systems. However, in order to construct the integrated design system, the prerequisite condition is how much save computational cost because of iterative process in optimization design and lots of data information in CAD/CAE integration. Therefore, this paper presents that an efficient approximation method, Adaptive approximation, is a competent strategy via MDO framework systems.

A study of Stability of Emulsion Fuel (에멀젼 연료의 안정성에 대한 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1330-1343
    • /
    • 2020
  • In this study, emulsion fuel which contained water of 10 ~ 20% was prepared mixed with water and MDO(Marine Diesel Oil) which largely used in near sea. Diffusion stability of emulsion fuel was measured. Diffusion stability was measured at 30℃, 45℃, and 60℃ for 10 days respectively. The stability of the emulsion fuel was stabilized in the order of MDO-10 > MDO-13 > MDO-16 > MDO-20 and it means that the stability of the emulsion fuel was found to be stable in the order of low water content. Meanwhile, an engine dynamo-meter was used to test whether the manufactured emulsion fuel was actually available in the engine. The emulsified MDO emulsion fuel could be used as fuel for ships. For samples with more than 16% water added emulsion fuel, smoke was reduced by more than 50% in the load area of more than 50%, and nitrogen oxides were reduced by 20%.

Integrated Design System using MDO and Approximation Technique (MDO 통합 설계 시스템을 위한 근사기법의 활용)

  • 양영순;박창규;장범선;유원선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.275-283
    • /
    • 2004
  • The paper describes the integrated design system using MDO and approximation technique. In MDO related research, final target is an integrated and automated MDO framework systems. However, in order to construct the integrated design system, the prerequisite condition is how much save computational cost because of iterative process in optimization design and lots of data information in CAD/CAE integration. Therefore, this paper presents that an efficient approximation method, Adaptive Approximation, is a competent strategy via MDO framework systems.

  • PDF

Missile Configuration Design and Optimization Using MDO Framework (MDO 프레임워크를 이용한 유도무기 최적 형상 설계)

  • Lee Seung-Jin;Kim Woo-Hyun;Lee Jae-Woo;Lee Chang-Hyuk;Kim Sang-Ho;Hwang Sung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.343-346
    • /
    • 2006
  • In this study, optimization process is constructed for developing missile MDO framework. The analysis tools which are integrated in the missile MDO framework and data flow between analysis tools are investigated. Using analyzed results, the optimal design scenario is constructed. Then to verify optimal design scenario, missile design problem is made and performed.

  • PDF

Multidisciplinary Aircraft Wing Design Using the MDO Framework (MDO 프레임워크 개발을 통한 항공기 날개 통합최적화 설계)

  • Lee, Jae-Woo;Kim, Jong-Hwan;Jeang, Ju-Young;Jeon, Kwon-Su;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.23-33
    • /
    • 2004
  • MDO framework, which provides multidisciplinary system design and optimization environment, requires integration of the analyses codes developed at various computer languages and operating systems, integration of CAD and DBMS, and development of complex GUI. Emphases must be given to the software modification and upgrades in conjunction with the analysis code addition and MDO method implementation. In this study, techniques about system integration and analysis code interface have been studied extensively, and the database design and communication methods which can handle the MDO methods like MDF and CO have been studied. Using the dedicated MDO framework developed for the air vehicle design, the multidisciplinary fighter aircraft wing design has been performed to demonstrate the efficiency and usefulness of the software. Optimum wing configuration is derived using the gradient-based optimization methods within thirty design iterations.

MDO-Based Design Collaboration (MDO 기반 협력설계 시스템)

  • Choi, Young;Park, Jin-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.142-150
    • /
    • 2003
  • MDO is one of the efficient methods for huge and multi -functional system design. This paper describes a design collaboration framework with MDO in networked design environment. A prototype of web -based integrated design system was implemented to show sharing and exchange of models and analysis information between MDO modules and collaborative design stations. Server System consists of MDO modules for optimization and modeling module for 3D modeling operation. Client system provide user with graphic interface for shape modeling and system operation. We believe that the proposed approach can be extended to solve real complex multidisciplinary design problems.

A Study on the New Method for Structural Analysis and Design by MDO(Multidisciplinary Design Optimization) Methodology : Application to Structural Design of Flap Drive System (MDO기법에 의한 새로운 구조해석 및 설계기법 고찰: 플랩 구동장치의 구조설계에의 적용)

  • 권영주;방혜철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.184-195
    • /
    • 2000
  • MDO (Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a large number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided systems such as Geometric Solid Modeller, Mesh Generator, CAD system and CAE system. And this paper introduces MDO methodology as a new method for structural analysis and design through the application to the structural design of flap drive system. In a MDO methodology application to the structural design of flap drive system, kinetodynamic analysis is done using a simple aerodynamic analysis model for the air flow over the flap surface instead of difficult aerodynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. And the structural buckling analysis for push pull rod is also done to confirm the optimum structural condition (optimum cross section shape of push pull rod).

  • PDF

다분야통합 설계 최적화(MDO) 문제의 정식화 기법에 대한 고찰 Part1: MDO의 정식화 관련된 Issue들

  • 양영순;정현승
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.52-61
    • /
    • 2000
  • 이상에서 MDO 기법의 정식화와 관련된 issue들인 해석의 연성과 관련된 SAND 및 NAND 기법과 의사결정의 분산과 관련된 다단계 최적화 기법을 살펴보았다.Part 2에서는 MDO기법의 정식화 방법들을 소개하고, 각 방법들이 Part1에서 언급된 issue들을 어떻게 다루고 있는지 살펴볼 것이다.

  • PDF

Introduction of Design Framework for Multidisciplinary Design Optimization (다분야통합최적설계를 위한 설계프레임웍의 소개)

  • 이세정;최동훈
    • Computational Structural Engineering
    • /
    • v.17 no.3
    • /
    • pp.14-21
    • /
    • 2004
  • MDO프레임웍은 설계 작업을 통합적으로 관리하고 자동화하여 설계도구 간의 데이터 전달과 변환에 소요되는 설계자의 부담을 경감시키며 다분야 전문가가 참여하는 협동설계 환경을 제공함으로써 다분야를 동시에 고려한 효율적 설계를 지원한다. 이번 글에서는 이러한 MDO프레임웍으로 개발된 EMDIOS를 소개하고, 그 개발 배경과 타당성을 개략적으로 제시하였다. EMDIOS는 분산 환경을 제공하고, 데이터베이스와 연계되어 정의된 문제와 문제 풀이 절차를 저장하고 실행시 발생하는 데이터들을 체계적으로 관리하는 구조를 갖는다. MDO문제 해결에 필요한 도구들은 모두 소프트웨어 컴포넌트로 구성 및 기술되어 컴포넌트 등록기에 등록되어 저장된다. 등록된 컴포넌트는 GUI기반의 MDO커널에 의하여 검색되고 MDO문제해결 절차의 구성 요소가 된다. 구성된 문제 해결을 위한 실행은 컴포넌트 서비스 에이전트에 의하여 이루어진다. EMDIOS는 새로운 설계도구를 EMDIOS에 쉽게 통합하여 사용할 수 있도록 공통적으로 구현될 수 있는 부분을 구현한 추상 클래스와 이로부터 필요한 인터페이스를 생성할 수 있는 인터페이스 제조기를 제공함으로써 확장성과 개방성을 제공한다. 제시된 MDO 프레임웍의 사용자 인터페이스는 가장 많은 사용자를 확보하고 있는 윈도우 환경에서 Visual C++를 이용하여 개발되고 있으며, 다양한 OS환경에서 작동되어야 하는 래퍼는 JAVA로 개발하였다. 현재 개발된 EMDIOS는 다양한 벤치 마크 테스트 중이며 올해 9월이후에는 일반에게도 공개할 수 있는 프레임웍으로써 모습을 갖출 것으로 보인다.