• 제목/요약/키워드: MEMS Microphone

검색결과 21건 처리시간 0.027초

기판접합기술을 이용한 MEMS 컨덴서 마이크로폰의 설계와 제작 (Design and Fabrication of MEMS Condenser Microphone Using Wafer Bonding Technology)

  • 권휴상;이광철
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1272-1278
    • /
    • 2006
  • This paper presents a novel MEMS condenser microphone with rigid backplate to enhance acoustic characteristics. The MEMS condenser microphone consists of membrane and backplate chips which are bonded together by gold-tin(Au/Sn) eutectic solder bonding. The membrane chip has $2.5mm{\times}2.5mm$, 0.5${\mu}m$ thick low stress silicon nitride membrane, $2mm{\times}2mm$ Au/Ni/Cr membrane electrode, and 3${\mu}m$ thick Au/Sn layer. The backplate chip has $2mm{\times}2mm$, 150${\mu}m$ thick single crystal silicon rigid backplate, $1.8mm{\times}1.8mm$ backplate electrode, and air gap, which is fabricated by bulk micromachining and silicon deep reactive ion etching. Slots and $50{\sim}60{\mu}m$ radius circular acoustic holes to reduce air damping are also formed in the backplate chip. The fabricated microphone sensitivity is 39.8 ${\mu}V/Pa$(-88 dB re. 1 V/Pa) at 1 kHz and 28 V polarization voltage. The microphone shows flat frequency response within 1 dB between 20 Hz and 5 kHz.

Performance Test and Evaluations of a MEMS Microphone for the Hearing Impaired

  • Kwak, Jun-Hyuk;Kang, Hanmi;Lee, YoungHwa;Jung, Youngdo;Kim, Jin-Hwan;Hur, Shin
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.326-331
    • /
    • 2014
  • In this study, a MEMS microphone that uses $Si_3N_4$ as the vibration membrane was produced for application as an auditory device using a sound visualization technique (sound visualization) for the hearing impaired. Two sheets of 6-inch silicon wafer were each fabricated into a vibration membrane and back plate, after which, wafer bonding was performed. A certain amount of charge was created between the bonded vibration membrane and the back plate electrodes, and a MEMS microphone that functioned through the capacitive method that uses change in such charge was fabricated. In order to evaluate the characteristics of the prepared MEMS microphone, the frequency flatness, frequency response, properties of phase between samples, and directivity according to the direction of sound source were analyzed. The MEMS microphone showed excellent flatness per frequency in the audio frequency (100 Hz-10 kHz) and a high response of at least -42 dB (sound pressure level). Further, a stable differential phase between the samples of within -3 dB was observed between 100 Hz-6 kHz. In particular, excellent omnidirectional properties were demonstrated in the frequency range of 125 Hz-4 kHz.

잡음 환경에서 음성 인식률 향상에 필요한 MEMS 장치 개발에 관한 연구 (The research on the MEMS device improvement which is necessary for the noise environment in the speech recognition rate improvement)

  • 양기웅;이형근
    • 한국정보통신학회논문지
    • /
    • 제22권12호
    • /
    • pp.1659-1666
    • /
    • 2018
  • 입력된 소리가 음성과 음향이 혼재된 경우 잡음의 영향으로 음성 인식률이 저하됨을 알 수 있으며 S/W적 처리 한계를 극복코자 H/W 장치인 MEMS 장치를 개발하여 음성 인식률을 향상시켰다. MEMS 마이크로폰 장치는 음성을 입력하는 장치로서 다양한 모양으로 구현되어 사용된다. 기존 MEMS 마이크로폰은 일반적으로 우수한 성능을 발휘하나 잡음 과 같은 특수 환경에선 음성과 음향이 혼재되어 처리 성능이 저하되는 문제점이 발생됨을 알 수 있었다. 이러한 문제점을 개선코자 초기 입력장치에 음성 특성을 구분하여 검출할 수 있는 신규 고안된 MEMS 장치를 사용하여 향상시켰다.

Increase of Side-lobe Level Difference of Spherical Microphone Array by Implementing MEMS Sensor

  • 이재형;최시홍;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.816-820
    • /
    • 2011
  • 본 논문은 구형 마이크로폰 어레이의 부엽 레벨의 차를 증가시키기 위한 방법에 대한 연구 내용을 다루었다. 일반적인 어레이 신호처리에서 마이크로폰을 조밀하게 배치함으로써 어레이 응답에서의 주엽과 부엽 간의 차이를 늘릴 수 있고 어레이의 소음원 판별능력을 증가시킨다. 최근 사용되고 있는 상용 에레이들은 제작 단가와 어레이의 크기 때문에 센서의 수를 늘리는데 한계를 보이고 있다. 이런 문제를 극복하기 위해 본 연구에서는 MEMS 센서를 이용하여 구형 어레이에 적용하였다. 구형 마이크로폰 어레이를 이용한 시뮬레이션과 실험을 통해 정현파 소음원을 측정하였다. 실험을 위해 32 개의 일반 측정용 마이크로폰을 이용한 어레이와 85 개의 MEMS 마이크로폰을 이용한 구형 어레이를 제작하였다. 구형 조화 분해기법과 빔형성기법을 이용하여 측정 데이터를 분석하였다. 2 kHz 이상의 소음원에 대하여 MEMS 마이크로폰 어레이가 4 dB 이상의 부엽 저감 능력을 가지는 것을 확인하였다.

  • PDF

기판접합기술을 이용한 두꺼운 백플레이트와 수직음향구멍을 갖는 정전용량형 마이크로폰의 설계와 제작 (Design and fabrication of condenser microphone with rigid backplate and vertical acoustic holes using DRIE and wafer bonding technology)

  • 권휴상;이광철
    • 센서학회지
    • /
    • 제16권1호
    • /
    • pp.62-67
    • /
    • 2007
  • This paper presents a novel MEMS condenser microphone with rigid backplate to enhance acoustic characteristics. The MEMS condenser microphone consists of membrane and backplate chips which are bonded together by gold-tin (Au/Sn) eutectic solder bonding. The membrane chip has 2.5 mm${\times}$2.5 mm, $0.5{\mu}m$ thick low stress silicon nitride membrane, 2 mm${\times}$2 mm Au/Ni/Cr membrane electrode, and $3{\mu}m$ thick Au/Sn layer. The backplate chip has 2 mm${\times}$2 mm, $150{\mu}m$ thick single crystal silicon rigid backplate, 1.8 mm${\times}$1.8 mm backplate electrode, and air gap, which is fabricated by bulk micromachining and silicon deep reactive ion etching. Slots and $50-60{\mu}m$ radius circular acoustic holes to reduce air damping are also formed in the backplate chip. The fabricated microphone sensitivity is $39.8{\mu}V/Pa$ (-88 dB re. 1 V/Pa) at 1 kHz and 28 V polarization voltage. The microphone shows flat frequency response within 1 dB between 20 Hz and 5 kHz.

Embedded 기술을 이용한 COS MEMS 시스템 설계 (COS MEMS System Design with Embedded Technology)

  • Hong, Seon Hack;Lee, Seong June;Park, Hyo Jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.405-411
    • /
    • 2020
  • In this paper, we designed the COS MEMS system for sensing the falling detection and explosive noise of fuse link in COS (Cut Out Switch) installing on the power distribution. This system analyzed the failure characteristics and an instantaneous breakdown of power distribution. Therefore, our system strengths the industrial competence and guaranties the stable power supply. In this paper, we applied BLE (Bluetooth Low Energy) technology which is suitable protocol for low data rate, low power consumption and low-cost sensor applications. We experimented with LSM6DSOX which is system-in-module featuring 3 axis digital accelerometer and gyroscope boosting in high-performance mode and enabling always-on low-power features for an optimal motion for the COS fuse holder. Also, we used the MP34DT05-A for gathering an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The proposed COS MEMS system is developed based on nRF52 SoC (System on Chip), and contained a 3-axis digital accelerometer, a digital microphone, and a SD card. In this paper of experiment steps, we analyzed the performance of COS MEMS system with gathering the accelerometer raw data and the PDM (Pulse Data Modulation) data of MEMS microphone for broadcasting the failure of COS status.