• Title/Summary/Keyword: MLSS

Search Result 218, Processing Time 0.031 seconds

Evaluation of Settling Characteristics at Lamellar Secondary Clarifier (Lamellar 이차침전지에서의 침강 특성 파악)

  • Lee, Byong-Hi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • Where an activated sludge system needs to be converted to biological nutrient removal(BNR) system, the secondary clarifier must handle higher MLSS from bioreactor since nitrification in BNR system that requires higher SRTs than activated sludge system. Either increase the clarifier size or modification of clarifier physical structure is required to cope with MLSS surge. One of recommended structural modification is the insertion of Lamellar within clarifier. In this study, two clarifiers - one has Lamellar structure inserted and the other does not - were used to compare the effect of Lamellar in solid/liquid separation. Same MLSS was fed to both clarifiers and concentrations of MLSS were varied. With all MLSS concentrations, attachment of MLSS on Lamellar was observed and it was found that detached MLSS caused the higher effluent SS concentrations than that of non-Lamellar clarifier effluent. From these results, Lamellar should not be inserted in clarifier to handle MLSS from BNR processes and the recommendation must be withdrawn.

Effects of MLSS Concentration and Influent C/N Ratio on the Nitrogen Removal Efficiency of Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactors (교차 간헐 포기식 부직포 여과막 생물반응조에서 MLSS 농도 및 유입수 C/N 비가 질소 제거효율에 미치는 영향)

  • Jung, Kyoung-Eun;Bae, Min-Su;Lee, Jong-Ho;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.501-510
    • /
    • 2006
  • To investigate the effects of MLSS concentration and influent C/N ratio on the nitrogen removal efficiency of alternately intermittently aerated nonwoven fabric filter bioreactors, the MLSS concentrations of the reactors were maintained at approximately 5,500 mg/L, 10,000 mg/L and 15,000 mg/L, and the influent TCOD/TKN ratio was decreased gradually from 5 to 2 by adding $NH_4Cl$. The influent was prepared by diluting a food waste leachate to a TCOD concentration of about 300 mg/L. The results of the experiment showed F/M ratios less than 0.112 g TCOD/g MLSS-day, average TCOD removal efficiencies of above 95%, and an average observed microbial yield coefficient of 0.283 g MLSS/g COD removed. The nitrification efficiencies were computed to be always better than 96% except one case where the nitrification efficiency was 90.5% when the MLSS concentration and the influent TCOD/TKN ratio was 5,500 mg/L and 2, respectively. The denitrification efficiency deteriorated as the influent TCOD/TKN ratio decreased. The average denitrification efficiency at the MLSS concentration of 10,000 mg/L was 10.7% better than that at the MLSS concentration of 5,500 mg/L, and the denitrification rate improved at a rate of 2.66 mg NL as the MLSS concentration increased by 1,000 mg/L. When the MLSS concentration was 15,000 mg/L, however, the average denitrification efficiency was merely 4.6% higher compared to when the MLSS concentration was 5,500 mg/L, and the denitrification rate increased at a rate of 0.75 mg N/L per 1,000 mg/L MLSS increase. Therefore, no strict proportional relationship was found between MLSS concentration and endogenous denitrification rate. The average alkalinity consumption rate was 3.36 mg alkalinity/mg T-N removed, which is similar to the theoretical value of 3.57 mg alkalinity/mg T-N removed, but the rate increased as the influent TCOD/TKN ratio decreased.

Evaluation of bioflocculation and settling characteristics for MLSS from a Biological Nutrient Removal Plant (생물학적 고도처리 MLSS의 생응집성 및 침강성 파악)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.219-225
    • /
    • 2008
  • Evaluating and designing secondary clarifier require to define characteristics of influent MLSS (Mixed Liquor Suspended Solids). In this study, bioflocculation and settling characteristics for MLSS from a Biological Nutrient Removal (BNR) plant located in near Seoul were measured. MLSS concentrations in bioreactor were about 2,500mg/L in summer and about 4,000mg/L in winter, respectively. Tests showed that there was not much bioflocculation occurred in secondary clarifier. Average ESS/DSS (Effluent Suspended Solids/Dispersed Suspended Solids) was 100%. From the settling tests, ZSV (Zone Settling Velocity) and settling constant (n) in Vesilind equation were estimated at different MLSS temperatures. SVI (Sludge Volume Index) and SSVI (Stirred Sludge Volume Index) were also measured at different temperatures. It was found that ZSV was positively correlated with temperature and n was inversely proportional to temperature. SVI and SSVI had very similar values at about $25^{\circ}C$ of MLSS, However, SVI had more than 2 times higher values than SSVI at below $20^{\circ}C$ of MLSS. Temperature effect must be considered to design and evaluate secondary clarifier.

The Effects of HRT, MLSS and DO on Nitrogen Removal Efficiency in MBR Process with Internal Baffle (내부 Baffle을 설치한 MBR 공정에서 HRT와 MLSS농도, DO농도 변화가 질소제거 효율에 미치는 영향)

  • Whang, Gye-Dae;Park, Joo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.527-537
    • /
    • 2009
  • Three sets of parallel MBRs (reactor No.1, reactor No.2, reactor No.3) maintaining an MLSS of 4,000 mg/L, 6,000 mg/L and 8,000 mg/L, respectively, were operated to investigate the effect of various HRTs and DO concentration of MBRs on the removal efficiency of organic matters and nitrogen. The HRTs were operated on 4 hr, 6 hr, 8 hr. DO concentrations were ranged 1.5~2.0 mg/L and 0.5~1.0 mg/L respectively on each HRT conditions. MBR was divided into an aerated part and non-aerated part by baffle placed under the water. DO concentrations were controlled by altering the position of baffle. In terms of TSS and CODCr, all systems had a similar level of the removal under varied HRTs and MLSS. TSS removal efficiency was more than 99% and CODCr removal was ranged 94~97% under all conditions. Under the same condition on the HRT and MLSS concentrations, DO concentrations did not affect the organic removal efficiency. On the nitrification efficiency, with high DO concentration, as HRT or MLSS increased, the slight increment of nitrification efficiency was observed. However, under the low DO concentration, increase of MLSS and HRT resulted in larger increase of the nitrification efficiency. At the same HRT and MLSS, the nitrification efficiency increased greatly with up to 16% as DO increased. When the HRT increased from 4hr to 8hr, the denitrification efficiency slightly increased under most of conditions. However, the increase of MLSS resulted in about 19~39% denitrification efficiency increment. MLSS concentrations showed great effect on the denitrification. The increase of the DO concentration at the same HRT and MLSS resulted in decrease of denitrification efficiency with up to 27%. In all systems, the denitrification efficiency had more influence on the TN removal efficiency than nitrification efficiency. So, MLSS concentration has greater effect on the TN removal than HRT and DO. The TN removal efficiency increased as MLSS increased with up to 37%. As a result, the highest TN removal efficiency was observed 79.0% at the condition showed the highest denitrification efficiency that DO of 0.5~1.0 mg/L, an HRT of 8 hr, and 8,000 mg/L of MLSS concentration were maintained.

Minimization of Excess Activated Sludge in Nonwoven Fabric Filter Bioreactor (부직포 여과막 생물반응조에서의 폐활성슬러지 감량화)

  • Jung, Kyoung-Eun;Bae, Min-Su;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.88-96
    • /
    • 2006
  • Among the various methods for minimization of waste activated sludge, maintaining a low F/M ratio in the bioreactor is known to be the most effective reliable one. In this research, various experiments were performed to check the capability of the nonwoven fabric filter bioreactor, which has been proved able to maintain a low F/M ratio by maintaining a high MLSS concentration, for excess sludge minimization. The reactor was intermittently fed with a synthetic wastewater having a COD concentration of approximately 300 mg/L and no SS. Results of the experiments showed that the F/M ratio in the reactor decreased to a minimum value of 0.02 g COD/g MLSS-day as the MLSS concentration increased to a maximum value of 31,010 mg/L. However, the measured endogenous decay coefficients and oxygen uptake rates of the MLSS confirmed that the activity of the MLSS decreased as the MLSS concentration increased. Based on the increase of MLSS in the reactor and the mass balance during the whole experimental period, the average microorganism yield coefficients were computed to be low values of 0.148 and 0.139 g MLSS/g COD, respectively. These results indicate that the nonwoven fabric filter bioreactor employed in this research is effective for minimization of excess sludge production.

Study on Organic Matter and Nitrogen Removal by Biological Treatment of Wastewater Processing of Chicken, which is the Primary Chemical Processing (1차 화학 처리된 닭 가공 폐수의 생물학적 처리에 의한 유기물 및 질소제거에 관한 연구)

  • Han, Hyung Suk;Choi, Yong Gu;Song, Jin Ho;Kim, Ho
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.247-256
    • /
    • 2014
  • A company, which is chicken butcherying-plant, was scheduled to increase up to twice output. We researched the way to increase up to twice the processing efficiency at the target biological treatment tank of A company. We performed for this study to obtain the reason why organic matter and nitrogen removal efficiency is increased when MLSS concentration is increased. It's performed at the target of pressure flotation water on SBR system. We performed the research which MLSS was 12,700 mg/L for 30hours (in aerobic condition for 25 hours and in anoxic condition for 5 hours). As a result, the nitrification was happened completely in aerobic condition within 25 hours. Denitrification efficiency was also over 90% when C/N ratio was over 3:1. After the experiment, we changed the concentration of MLSS 5,600 to 12,700 mg/L. In condition MLSS was about 11,000 mg/L and HRT were 30 hours meet the Effluent quality standard.

A Study on Efficiency of SBR Process by Composition of Artificially Wastewater (인공하수 조성 성분에 따른 SBR 처리 공정의 효율에 관한 연구)

  • Lee Jang-Hoon;Jang Seung-Cheol;Kwon Hyuk-Ku;Kim Dong Wook
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.99-106
    • /
    • 2005
  • The removals of organic matter, nitrogen and phosphate in wastewater were investigated with Sequencing Batch Reactor (SBR). Glucose and sodium acetate were Used for organic carbon source so as to know nutrient removal efficiency in proportion to MLSS concentration. In the case of glucose, the COD removal rate was $74\%,\;41\%\;and\;66\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was $57\%,\;21\%\;and\;38\%$, the T-N was $24\%,\;13\%\;and\;44\%$, and the T-P was $12\%,\;21\%\;and\;33\%$. As a result, the removal rate of organic materials showed the finest remove when MLSS was 5000, but the nutrient removal rate appeared as was best when MLSS was 1000. In the case of sodium acetate, the COD removal rate was $83\%,\;81\%\;and\;86\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was appeared by $76\%,\;82\%\;and\;92\%$, the T-N $57\%,\;42\%\;and\;78\%$, and the T-P $48\%,\;52\%\;and\;38\%$. As a result, organic and T-N removal rates were best when MLSS was 1000. But, the T-P removal rates were best when MLSS was 3000. Glucose was shown fast removal in reaction beginning, but screened by more efficient thing though sodium acetate removes organic matter, nitrogen and phosphate. Form of floc was ideal in all reactors regardless of carbon source and MLSS concentration. And its diameter was about $200\~500{\mu}m$.

Modeling of the effect of current density and contact time on membrane fouling reduction in EC-MBR at different MLSS concentration (EC-MBR 공정의 MLSS, 전류밀도 및 접촉시간이 막 오염 감소에 미치는 영향 모델링)

  • Kim, Wan-Kyu;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • Electro-coagulation process has been gained an attention recently because it could overcome the membrane fouling problems in MBR(Membrane bio-reactor). Effect of the key operational parameters in electro-coagulation, current density(${\rho}_i$) and contact time(t) on membrane fouling reduction was investigated in this study. A kinetic model for ${\rho}_i$ and t required to reduce the membrane fouling was suggested under different MLSS(mixed liquor suspended solids) concentration. Total 48 batch type experiments of electro-coagulations under different sets of current densities(2.5, 6, 12 and $24A/m^2$), contact times(0, 2, 6 and 12 hr) and MLSS concentration(4500, 6500 and 8500mg/L) were carried out. After each electro-coagulation under different conditions, a series of membrane filtration was performed to get information on how much of membrane fouling was reduced. The membrane fouling decreased as the ${\rho}_i$ and t increased but as MLSS decreased. Total fouling resistances, Rt (=Rc+Rf) were calculated and compared to those of the controls (Ro), which were obtained from the experiments without electro-coagulation. A kinetic approach for the fouling reduction rate (Rt/Ro) was carried out and three equations under different MLSS concentration were suggested: i) ${\rho}_i^{0.39}t=3.5$ (MLSS=4500 mg/L), ii) ${\rho}_i^{0.46}t=7.0$ (MLSS=6500 mg/L), iii) ${\rho}_i^{0.74}t=10.5$ (MLSS=8500 mg/L). These equations state that the product of ${\rho}_i$ and t needed to reduce the fouling in certain amounts (in this study, 10% of fouling reduction) is always constant.

A Study on the Effects of Cosubstrates on the Biological Treatment and the Decolorization Mechanisms of Dyeing Wastewater (염색폐수의 생물학적 처리에 미치는 cosubstrates의 영향 및 색도제거 기전 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Ahn, Jae-Hwan;Shin, Eung-Bai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.738-745
    • /
    • 2006
  • In this research, the decolorization mechanisms of dye wastewater were divided into two pathways, one was physicochemical sorption to biomass flocs and the other was biological removal by microbial metabolisms. Batch tests were conducted to examine the reaction conditions, anaerobic and aerobic conditions, types and dose of cosubstrates, and to confirm the mechanisms of decolorization through the biosorption tests using the activated sludge and the autoclaved deactivated sludge. From the tests, the decolorization efficiencies of dye wastewater were 102 ${\Delta}$unit/g MLSS under the aerobic condition and 123 ${\Delta}$unit/g MLSS under the anaerobic condition, and organic removals were 82 $mg{\Delta}$COD/gMLSS and 75 $mg{\Delta}$COD/gMLSS respectively. Acetate was the more efficient cosubstrate than the domestic wastewater in the decolorization step. In addition the removal of colors and organics was increased with cosubstrates dosage. And $20.3{\sim}37.3$ ${\Delta}$unit/g MLSS was removed by the autoclaved sludge and $102.0{\sim}159.0$ ${\Delta}$unit/g MLSS by the activated sludge. The physicochemical sorption was dominant in the beginning of biosorption tests, and the biological decolorization was increased with a cosubstrate in the course of time.

Effects of Biomass Concentration and Sludge Loading Rate on Bioactivity and Membrane Fouling in a Submerged Membrane Bioreactor System (침지형 분리막 생물반응기에서 미생물 농도와 슬러지 부하에 따른 미생물 활성 변화와 막오염 특성 연구)

  • Tak Tae-Moon;Bae Tae-Hyun;Jang Gyoung-Gug
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2004
  • In this study, membranes were coupled to a sequencing batch reactor for simultaneous removal of organic matter and nitrogen, and the influences of MLSS (mixed liquor suspended solid) concentration and the sludge loading rate on membrane fouling and bioactivity were investigated. The amount of membrane fouling slightly increased with MLSS concentration at both non-aeration and aeration conditions, but effect of MLSS concentration was more significant at aeration condition. Although the effect of MLSS concentration on membrane fouling was found to be insignificant at low concentration level, extremely low sludge loading, which were generated by the maintenance of large amount of biomass in the reactor, caused severe membrane fouling, and air scouring effect decreased significantly in this condition. Specific bioactivity was constantly reduced as sludge loading rate decreased. In spite of high MLSS concentration over 17,000 mg/L, the activity of the reactor decreased at extremely low sludge loading rate presumably due to the lower oxygen transfer and the competition of biomass to deficient substrate.