• Title/Summary/Keyword: MMC-HVDC

Search Result 102, Processing Time 0.022 seconds

Application of MMC-HVDC System for Regulating Grid Voltage Based on Jeju Island Power System (제주계통의 전압조정을 위한 MMC-HVDC 시스템 응용)

  • Quach, Ngoc-Thinh;Kim, Eel-Hwan;Lee, Do-Heon;Kim, Ho-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.494-502
    • /
    • 2014
  • This paper presents a control method of the modular multilevel converter - high-voltage direct current (MMC-HVDC) system to regulate grid voltage on the basis of the Jeju Island power system. In this case, the MMC-HVDC system is controlled as a static synchronous compensator (Statcom) to exchange the reactive power with the power grid. The operation of the MMC-HVDC system is verified by using the PSCAD/EMTDC simulation program. The Jeju Island power system is first established on the basis of the parameters and measured data from the real Jeju Island power system. This power system consists of two line-commutated converter - high-voltage direct current (LCC-HVDC) systems, two Statcom systems, wind farms, thermal power plants, transformers, and transmission and distribution lines. The proposed control method is then applied by replacing one LCC-HVDC system with a MMC-HVDC system. Simulation results with and without using the MMC-HVDC system are compared to evaluate the effectiveness of the control method.

A Study on the Benefit Estimation of MMC VSC-HVDC System (MMC VSC-HVDC의 경제성평가에 관한 연구)

  • Sun, Hwi-il;Park, Seong-Mi;Yoo, Dong-Wook;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Recently, interest in the DC transmission is rapidly increasing worldwide. In many countries and leading companies are prior to the aggressive development of HVDC technology and application. Especially, VSC-HVDC system has been widely applied to transfer power at long distance between power plant and power consumption area. Therefore in this paper, we analyzed the benefit-cost of VSC-HVDC system which has more advantages than existing transmission system. The proposed system is MMC(Modular Multilevel Converter) VSC-HVDC system that have stability of Power Grid, interconnect Large-scale New Power Generation Plants by prevents Blackout. And MMC VSC-HVDC system Reduced the loss importing foreign systems. And the benefits were calculated in four stages, and the costs were applied to the actual project. By evaluating the various avoidance costs compared to the benefit-cost, it was confirmed that MMC VSC-HVDC system was advantageous in system stability and economic and social benefits.

Frequency and Voltage Control Strategies of the Jeju Island Power System Based on MMC-HVDC Systems

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Song, Seung-Ho;Kim, Eel-Hwan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.204-211
    • /
    • 2018
  • At present, one of two LCC-HVDC systems is responsible for controlling the grid frequency of the Jeju Island Power System (JIPS). The grid voltage is regulated by using STATCOMs. However, these two objectives can be achieved in one device that is called by a modular multilevel converter-high voltage direct current (MMC-HVDC) system. Therefore, this paper proposes frequency and voltage control strategies for the JIPS based on a MMC-HVDC system. In this case, the ancillary frequency and voltage controllers are implemented into the MMC-HVDC system. The modelling of the JIPS is done based on the parameters and measured data from the real JIPS. The simulation results obtained from the PSCAD/EMTDC simulation program are confirmed by comparing them to measured data from the real JIPS. Then, the effect of the MMC-HVDC system on the JIPS will be tested in many cases of operation when the JIPS operates with and without STATCOMs. The objective is to demonstrate the effectiveness of the proposed control strategy.

The Valve Redundancy Determination for HVDC Converter based on Modular Multilevel Converter (MMC기반의 전압형 HVDC 밸브의 여유율 결정)

  • Kim, Chan-Ki;Choi, Soon-Ho;Kang, Ji-Won;Yoon, Yong-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.328-334
    • /
    • 2016
  • This paper examines the reliability of a VSC-HVDC valve based on a modular multilevel converter (MMC) HVDC system. The main objective of this paper is to determine the redundancy of the MMC valve. Several prediction methods are introduced, but the binomial failure method is selected to be used. To determine the availability and reliability prediction of MMC valve, which comprises a DC/DC converter, a gate driver, a capacitor, and an IGBT, the failure data of the MMC module are used as the tracking data according to the experimental result. This method uses a simplified equation to find the valve redundancy by transforming the binomial function to De Moivre's formula. This method is the first to be used to find the valve margin.

A novel robust MMC HVDC topology in dc line fault (DC 지락 사고에 강인한 MMC HVDC의 새로운 토폴로지)

  • Jung, Hong-Ju;Kim, Si-Hwan;Kim, Rae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.514-515
    • /
    • 2013
  • 본 논문은 해상풍력단지와 같은 대용량 신재생에너지를 송전하는데 적합한 전압형 HVDC(High Voltage DC) 중에서, 최근 실용화되어 많은 연구가 이루어지고 있는 Modular Multi-level Converter HVDC(MMC HVDC)에 대한 새로운 토폴로지를 제안한 내용이다. 대표적인 MMC HVDC는 독일의 R. Marquardt 교수가 제안한 Half-Bridge 모듈을 적용하여 MMC를 구현하는 방식으로 이는 계통에 DC 지락 사고가 발생할 경우 컨버터를 구성하는 모듈에 큰 고장 전류가 흐르게 되고 결국 모듈의 주요 구성품인 IGBT가 소손 될 수 있는 약점을 지니고 있다. 이를 보완하기 위해 각 모듈에 Thyristor를 삽입하거나 새로운 모듈을 적용하는 방식이 제안되었다. 본 논문에서는 DC 지락 고장시 큰 고장 전류를 차단할 수 있는 새로운 모듈 구성을 제안하였다. 또한 제안된 토폴로지에 대한 기본 동작을 설명하고 시뮬레이션을 통해 제안한 방식과 기존의 방식을 비교 분석 하였다.

  • PDF

Trade-Off Strategies in Designing Capacitor Voltage Balancing Schemes for Modular Multilevel Converter HVDC

  • Nam, Taesik;Kim, Heejin;Kim, Sangmin;Son, Gum Tae;Chung, Yong-Ho;Park, Jung-Wook;Kim, Chan-Ki;Hur, Kyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.829-838
    • /
    • 2016
  • This paper focuses on the engineering trade-offs in designing capacitor voltage balancing schemes for modular multilevel converters (MMC) HVDC: regulation performance and switching loss. MMC is driven by the on/off switch operation of numerous submodules and the key design concern is balancing submodule capacitor voltages minimizing switching transition among submodules because it represents the voltage regulation performance and system loss. This paper first introduces the state-of-the-art MMC-HVDC submodule capacitor voltage balancing methods reported in the literatures and discusses the trade-offs in designing these methods for HVDC application. This paper further proposes a submodule capacitor balancing scheme exploiting a control signal to flexibly interchange between the on-state and the off-state submodules. The proposed scheme enables desired performance-based voltage regulation and avoids unnecessary switching transitions among submodules, consequently reducing the switching loss. The flexibility and controllability particularly fit in high-level MMC HVDC applications where the aforementioned design trade-offs become more crucial. Simulation studies for MMC HVDC are performed to demonstrate the validity and effectiveness of the proposed capacitor voltage balancing algorithm.

VPI-based Control Strategy for a Transformerless MMC-HVDC System Under Unbalanced Grid Conditions

  • Kim, Si-Hwan;Kim, June-Sung;Kim, Rae-Young;Cho, Jin-Tae;Kim, Seok-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2319-2328
    • /
    • 2018
  • This paper introduces a control method for a transformerless MMC-HVDC system. The proposed method can effectively control the grid currents of the MMC-HVDC system under unbalanced grid conditions such as a single line-to-ground fault. The proposed method controls the currents of the positive sequence component and the negative sequence component without separating algorithms. Therefore, complicated calculations for extracting the positive sequence and the negative sequence component are not required. In addition, a control method to regulate a zero sequence component current under unbalanced grid conditions in the transformerless MMC-HVDC system is also proposed. The validity of the proposed method is verified through PSCAD/EMTDC simulation.

Linearization Method of V-I Characteristic for MMC HVDC Conduction Losses Calculation (MMC HVDC의 전도 손실 계산을 위한 V-I 특성 곡선 근사 방법)

  • Na, Jongseo;Kim, Sangmin;Kim, Heejin;Jeong, Jongkyou;Hur, Kyeon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.303-304
    • /
    • 2019
  • 본 논문에서는 모듈러 멀티레벨 컨버터(Modular Multilevel Converter, MMC) 고압직류송전(High Voltage Direct Current, HVDC)의 전도 손실 계산을 위한 반도체 스위치 V-I 특성 곡선 근사 방법을 제안한다. 일반적으로 V-I 특성 곡선은 정격 전류 구간에 대해서만 선형화하여 사용하지만, MMC HVDC의 경우 암 전류의 직류 오프셋에 의해 V-I 특성 곡선의 비선형 구간에서 손실 계산에 오차가 크게 나타난다. 따라서 본 논문에서는 암 전류의 부호에 따라 별도의 V-I 특성 곡선 근사를 적용하여 MMC HVDC의 전도 손실 계산의 정확성을 향상하는 방안을 제안한다. 전도 손실 계산 결과는 PSCAD 시뮬레이션으로 취득한 손실 값과 비교하여 결과를 검증하였다.

  • PDF

Performance Test Circuit for a Valve of MMC Based HVDC Power Converter (MMC 기반 HVDC 전력변환기의 밸브 성능 시험회로)

  • Chi-Hwan Bae;Kwang-Rae Jo;Hak-Soo Kim;Eui-Cheol Nho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.76-81
    • /
    • 2023
  • A new test circuit for an MMC-based valve HVDC power converter is proposed. The proposed scheme satisfies the required clauses from IEC-62501. The valve test current contains second harmonic component and DC offset as well as a fundamental component that is quite similar to the real operating arm current of MMC based HVDC power system. The structure of the proposed test circuit is simple compared to conventional test circuits. Furthermore, the power supply voltage rating of the proposed test circuit is reduced dramatically around 20% of the conventional scheme with the same current rating. The validity of the proposed test circuit is verified through simulation and experimental results.

Technical Trends of HVDC MMC in Power Electronics (전력전자기술에서 HVDC MMC기술 현황)

  • Kim, Ryang-Kyu;Lee, Sang-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.389-390
    • /
    • 2017
  • 본 논문은 전압형 HVDC 시스템의 기술 동향에 대하여 설명하고 있다. 전압형 HVDC 시스템은 무효전력소모가 있고, 전류형 HVDC 시스템은 무효전력 소모가 없기 때문에 시스템의 구성과 제어에 많은 차이를 보이고 있다. 본 논문은 이러한 현황을 요약 정리한 논문이다.

  • PDF