• Title/Summary/Keyword: MMSE equalization

Search Result 42, Processing Time 0.033 seconds

Performance Analysis of Block Linear MMSE Equalization for OFDM Systems in Doubly Selective Channels (이중 선택적 채널 OFDM 시스템을 위한 블록 선형 MMSE 등화 방식의 성능 분석)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2010
  • In this paper, we analyze the performance of the block linear MMSE equalization for OFDM systems in doubly selective channels by computer simulations. The block linear MMSE equalization shows somewhat unusual BER characteristics in that the BER curve drops at first as SNR increases but then rises up as SNR increases further beyond some point. In this paper, we investigate the BER characteristics of the block linear MMSE equalization by analyzing the condition number of the coefficient matrix in the linear system involved in the equalization process, and propose a new method to avoid the BER performance degradation at high SNR.

Performance Comparison of MMSE and Blind Equalization for Digital Holographic Data Storage System

  • Baek, Woon-Sik;Choi, An-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.202-206
    • /
    • 2003
  • In this paper, minimum mean-squared-error(MMSE) and blind equalization schemes were employed to improve bit-error-rate(BER) and to reduce inter-symbol interference(ISI) generated during storage and retrieval processes of two-dimensional data in a digital holographic data storage system. We explained methods for designing and applying MMSE and blind equalization to improve BER in a digital holographic data storage system. From experimental evaluations, we compared the BER performances of MMSE and blind equalization and we showed that the BER performances of MMSE and blind equalization were improved significantly compared with those before equalization.

MRC MMSE Equalization for SC-FDE in Amplify-and-Forward Relaying Networks (AF 방식 중계기 네트워크에서의 SC-FDE를 위한 MRC MMSE 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2011
  • Relay-assisted multiple input multiple output (MIMO) technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose maximum ratio combining (MRC) minimum mean-square-error (MMSE) equalization for single carrier-frequency domain equalizer (SC-FDE) in amplify-and-forward (AF) relaying networks. The performance of SC-FDE system can be improved considerably by achieving both the diversity gain and the MMSE equalization gain when the signals from source-destination (S->D) and source-relay-destination (S->R->D) are combined and equalized by means of the MMSE criteria. We find the weighting coefficients of MRC combining and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying networks. Simulation results show that the proposed relay-based system considerably outperforms the conventional SC-FDE system.

A study on 1 & 2 dimensional minimum mean-squared-error equalization for digital holographic data storage system (디지털 홀로그래픽 데이터 저장 시스템을 위한 1차원 및 2차원 최소 평균-제곱-에러 등화에 관한 연구)

  • 최안식;전영식;정종래;백운식
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.486-492
    • /
    • 2002
  • In this paper. we presented 1 & 2 dimensional minimum mean-squared-error (MMSE) equalization scheme in a digital holographic data storage system to improve bit-error-rate (BER) and to mitigate inter-symbol interference (ISI) which were generated during the data storage and retrieval processes. We showed experimentally for ten data pages retrieved from the holographic storage system that BER and signal-to-noise ratio (SNR) were improved by adopting MMSE equalization.

Adaptive Blind MMSE Equalization for SIMO Channel

  • Ahn, Kyung-Seung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.753-762
    • /
    • 2002
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequences, nor dose it require a priori channel information. In this paper, an adaptive blind MMSE channel equalization technique based on second-order statistics in investigated. We present an adaptive blind MMSE channel equalization using multichannel linear prediction error method for estimating cross-correlation vector. They can be implemented as RLS or LMS algorithms to recursively update the cross-correlation vector. Once cross-correlation vector is available, it can be used for MMSE channel equalization. Unlike many known subspace methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch. Performance of our algorithms and comparisons with existing algorithms are shown for real measured digital microwave channel.

Performance Analysis of MMSE-Based Equalization of IMT-Advanced System in Time-Varing Channels (IMT-Advanced 시스템의 시변 채널에서의 MMSE 기반 등화 성능 분석)

  • Park, Sung-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.91-96
    • /
    • 2011
  • As the user's demand for ultra high-speed wireless internet has increased, the standardization, research and development of future mobile communication systems have been done for several years. IMT-Advanced system which is called fourth generation mobile communication should support the data rate of 1 Gbps for nomadic users and 100 Mbps for mobile users. Also, the system should hold call connection at the mobile speed of 350 km/h. Meanwhile, since Doppler spread is linearly proportional to mobile speed, high mobility leads to the increase of interference between subcarriers and the deterioration of detection performance consequently. In this paper, we evaluate and analyze detection probability with respect to equalization methods in time-varying channels under system parameters complying with IMT-Advanced requirements. According to computer simulation conducted by varying mobile speed and code rate, MMSE based equalization can mitigate performance degradation of IMT-Advanced system considerably in time-varying channels.

Pilot Symbol Assisted Channel Estimation and Equalization for OFDM Systems in Doubly Selective Channels (주파수 선택적 시변 채널 OFDM 시스템에서의 파일럿 심볼을 이용한 채널 예측 및 등화)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1408-1418
    • /
    • 2007
  • In this paper, we analyze the performance of pilot symbol assisted channel estimation and equalization schemes for OFDM systems over frequency-selective time-varying channels and propose methods to improve the system performance. In the least square(LS) and linear minimum mean square error(MMSE) channel estimation, time domain windowing is introduced for banding the frequency domain channel matrix. The linear MMSE and decision feedback equalization schemes are employed with the pilot symbols for channel estimation taken into account in the equalization process. To reduce computational complexity, the band LU matrix factorization algorithm is introduced in solving the linear systems involved in the equalization, and the performances are compared with the known previous results by computer simulations. When time domain windowing is employed in the decision feedback equalization, the matrix related with the decision feedback process is shown to be unhanded and the resultant performance degradation is analyzed.

Performance analysis of WPM-based transmission with equalization-aware bit loading

  • Buddhacharya, Sarbagya;Saengudomlert, Poompat
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.184-196
    • /
    • 2019
  • Wavelet packet modulation (WPM) is a multicarrier modulation (MCM) technique that has emerged as a potential alternative to the widely used orthogonal frequency-division multiplexing (OFDM) method. Because WPM has overlapped symbols, equalization cannot rely on the use of the cyclic prefix (CP), which is used in OFDM. This study applies linear minimum mean-square error (MMSE) equalization in the time domain instead of in the frequency domain to achieve low computational complexity. With a modest equalizer filter length, the imperfection of MMSE equalization results in subcarrier attenuation and noise amplification, which are considered in the development of a bit-loading algorithm. Analytical expressions for the bit error rate (BER) performance are derived and validated using simulation results. A performance evaluation is carried out in different test scenarios as per Recommendation ITU-R M.1225. Numerical results show that WPM with equalization-aware bit loading outperforms OFDM with bit loading. Because previous comparisons between WPM and OFDM did not include bit loading, the results obtained provide additional evidence of the benefits of WPM over OFDM.

A Study on Improvement of Broadband Radio Channel Characteristics using Linear Adaptive Equalizer (선형 적응 등화기 적용에 의한 광대역 무선채널 특성 개선에 관한 연구)

  • 윤영석;하덕호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.211-218
    • /
    • 2000
  • This paper describes the improvement of broadband radio channel characteristics using a MMSE adaptive equalization technique as a fundamental study of high transmission rates in indoor radio channel. First, the performance of 16-QAM system that employs a MMSE linear adaptive equalizer in Rayleigh fading channel is analyzed. Next, in order to improve broadband radio channel characteristics, we apply an adaptive equalization technique employing the MMSE algorithm to the radio channel measured by using circularly polarized antenna under indoor NLOS(non-line-of sight) environment. Consequently, for 16-QAM with adaptive equalizer, we can achieve the improvement of about 13 dB at $10^{-3}$ error rate as compared with general 16-QAM. Moreover, it was found that the adaptive equalization technique could improve broadband radio channel characteristics over the all measured areas. Also, it was found that the employing both adaptive equalization and polarization diversity technique together could improve broadband radio channel characteristics and reduce fading more effectively.

  • PDF

Frequency Domain Turbo Equalization for Multicode DS-CDMA in Frequency Selective Fading Channel (다중 확산 부호를 사용한 DS-CDMA에 대한 주파수 선택적 페이딩 채널에서 주파수 영역 터보 등화 기법)

  • Lee, Jun-Kyoung;Lee, Taek-Ju;Chae, Hyuk-Jin;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.102-109
    • /
    • 2008
  • The higher data rate of mobile communications has been required for various multimedia services. In DS-CDMA system, one of the solutions to increase the throughput is to use multicode. However, multipath channel destorys the orthogonality of spreading codes, which causes the intercede interference(ICI). ICI gives severe effect on multicode DS-CDMA for BER performance. Conventionally, multicode DS-CDMA system uses the Rake receiver with turbo code, which cannot overcome error floor caused by ICI. In this paper, we propose frequency domain turbo equalization based on minimum mean squared error(FDTE-MMSE) for multicode DS-CDMA in frequency selective channel and evaluate its BER performance by computer simulation. The simulation results show that FDTE-MMSE gives much better performance in high Eb/N0 than the Rake receiver with turbo code in multipath length L>1.