• Title/Summary/Keyword: Magnetizing yoke

Search Result 12, Processing Time 0.033 seconds

Optimum Shape Design of Magnetizing Yoke of 2 Pole PM Motor for Cogging Torque Reduction

  • Koh Chang-Seop;Ryu Jae-Seop;Hong Sun-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.168-172
    • /
    • 2005
  • A novel cogging torque reduction algorithm is presented for 2-pole permanent magnet DC motor. While the shape of the permanent magnet is changed in the conventional method, the pole shape of the magnetizing yoke is optimized in the presented algorithm. In order to parameterize the shape of the yoke, and the distribution of the residual magnetization of the permanent magnet, the Bezier spline is used. The shape of the magnetizing yoke is optimized using the design sensitivity analysis incorporated with the finite element method and Bezier spline.

Material Characteristics of Multipolar Magnetizing Fixtures (다극 착자용 요크의 재질에 따른 특성해석)

  • Kim, Chul-Ho;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.334-336
    • /
    • 1998
  • This paper deals with the problem of the magnetizing yoke fixture. The experimental test has been performed using the yoke fixture made of bakelite as well as ferromagnetic. The magnetizing current is the most essential criterial factor for delivering the impulse energy to the magnetized material, i.e ferrite core. The yoke of nonferromagnetic has shown its better performance in experimental results as well as in the finite element analysis.

  • PDF

A Study on the Design Method of Magnetizing Yoke Circuit Constant of 200kJ Magnetizer for Rotor Magnetization of High Capacity Permanent Magnet Motors (고용량 영구자석형 모터의 회전자 착자를 위한200 kJ급 착자기의 착자요크 회로정수 설계 방법에 관한 연구)

  • Jeong Minuk;SoongKeun Lee;GwonHu Baek;TaeKue Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.21-30
    • /
    • 2023
  • As the adoption and high-performance enhancement of Electric Vehicles continue, the demand for high-output motors and high-capacity Magnetizer for producing large-scale IPMSM is increasing. The maximum peak current of the magnetization and the capacitor discharge time, which are important factors in the magnetization process, are determined by the circuit constants of the magnetizer. In this paper, we analyze the magnetizing system using MATLAB SIMULINK to design the circuit constant of the magnetizing yoke for magnetizing design and present the design procedure for Design the circuit constant. As a result, the parameters of the magnetizing yoke were derived to be 0.015[ohm] and 0.035[mH] based on the capacitance of 15,000[uF] and voltage of 5,000[V].

Design of the Magnetizing System which is used for Magnetizing the NdFeB Magnet in a Squirrel Cage Rotor (유한요소해석을 이용한 영구자석매입형 유도성기동 동기전동기의 조립후 착자시스템 설계)

  • Lee, C.G.;Kwon, B.I.;Kim, B.T.;Woo, K.I.;Yang, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.404-406
    • /
    • 2001
  • This paper is about designing the magnetizing system which is used for magnetizing the NdFeB magnet in a squirrel cage rotor. It propose the shape of the magnetizing yoke, the number of coil turn and the capacitor discharging circuit parameter. In case of magnetizing the NdFeB magnet assembled with a squirrel cage rotor, the eddy current which is produced during magnetizing becomes a disturbance in magnetizing NdFeB magnet. Hence in this paper, we try to design optimized magnetizing system with eddy current considered by FEM(Finite Element Method).

  • PDF

Analysis of the Magnetizing Characteristics on Anisotropic Permanent Magnet (이방성영구자석의 착자특성 해석)

  • Lee, Hyang-Beom;Hahn, Song-Yop;Hong, Jung-Pyo;Choi, Hong-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.118-121
    • /
    • 1991
  • The characteristics of magnetizing system considering the anisotropy and the nonlinearity are analyrized using PEM in This paper. The case of magnetizing the ferrite magnet with 12 poles is analyrized. The anisotropy characteristic is considered when ferrite magnet which is widely used as permanent magnet is magnetized. The Nonlinear characteristic of magnetizing yoke aid ferrite is considered because the current is in the saturation region. When the magnetizing current value is over the optimum value, the magnet is magnetized with 24 poles. This is not the case of our expectation. Thus, for the case of our expected magnetizing form, it is the conclusion that the optimum magnetizing current value is selected.

  • PDF

Study in Magnetizing the NdFeB Magnet which is inserted in a Squirrel Cage Rotor (영구자석 매입형 유도성 기동 동기전동기의 조립후 착자에 대한 연구)

  • Lee, C.G.;Kwon, B.I.;Woo, K.I.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.27-29
    • /
    • 2001
  • In this paper, we study in magnetizing the NdFeB magnet which is inserted in a squirrel cage rotor. The inserted NdFeB magnet need much more magnetizing flux than that of ferrite magnet. Also the eddy current flowing in rotor bar disturbs the magnetizer in magnetizing the NdFeB magnet. The existing magnetizing yoke is designed by increasing the coil turn. But we recognize that only by increasing the coil turn it is impossible to make NdFeB magnet magnetized fully. Hence, in this paper we propose the method of increasing magnetizing flux by reducing the rotor bar area.

  • PDF

Magnetic Shielding Effectiveness Measurement of Magnetic Steel Sheets in ELF Range

  • Yeon, Kyo-Heum;Son, Derac;Park, Eon-Byeong;Lee, Jae-Young;Do, Kyung-Hwan;Park, Jae-Seg
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.173-176
    • /
    • 2008
  • In this study, a new kind of instrument for measuring the magnetic shielding effectiveness (MSE) was developed using a double yoke; one a magnetizing yoke and the other a sensing yoke. Using the developed instrument, the MSE could be measured for a steel sheet specimen in the ELF range, where the magnetic permeability contributes to the MSE at low frequencies and eddy currents contributes to the MSE high frequencies with < 0.1 dB reproducibility. The developed measuring method can be applied to quality control in a steel sheet company producing EMI/EMC shielding materials.

Effects of Magnetizing Currents on Remanent Flux Density in Multipole Magnetizer (다극착자기에서 착자전류가 잔류자속밀도에 미치는 영향)

  • 박관수;이향범;배동진;한송엽;최홍순;홍정표;주관정
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.145-149
    • /
    • 1992
  • The characteristics of electromagnetic devices with permanent magnet depends greatly on the remanence pattern of permanent magnet. So, it is necessary to analyze the pattern of remanence in permanent magnet. This paper presents a finite element analysis of magnetizer considering the nonlinearity and anisotropy of yoke and magnet in magnetizer. The distributions of magnetizations are obtained according to the variations of magnetizing currents for two kinds of magnetizers with different magnetizing poles. It is found that the excessive magnetizing current results in the reduction and polarity reversion of magnetization in the multi-pole magnetizing system where the pole angle is too small. During the design and analyzing of multi-pole magnetizer, it must be considered that there exists an optimal value of magnetizing current and pole angle of magnetizer.

  • PDF

Characteristics Magnetic Flux Leakage According to the Position of Hall Sensor (Hall 센서 위치에 따른 MFL 특성 고찰)

  • Kim, Sean;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.819-821
    • /
    • 2001
  • This paper describes a characteristics of MFL according to the position of Hall sensor Magnetic Flux Leakage(MFL) Method is used to detect surface defect in ferromagnetic plate. A plate has a surface defect and magnetizing equipment are producted to perform Non-Destructive Testing(NDT) using MFL. The SM 45C carbon steel plate is adopted to this experiment. there is a artifical defect with a twice of thickness and a half of depth of plate. Magnetizing equipment is composed of yoke made by layer-built of silicon sheet steel, NdFeB magnetic and iron brushes. Detecting defect is performed by MFL NDT using Hall sensor. It is shown that magnetic flux detected by Hall sensor is affected according to the position of Hall sensor through MFL experiment and numerical analysis.

  • PDF