• Title/Summary/Keyword: Majority Voting Classifiers

Search Result 15, Processing Time 0.028 seconds

A New Incremental Learning Algorithm with Probabilistic Weights Using Extended Data Expression

  • Yang, Kwangmo;Kolesnikova, Anastasiya;Lee, Won Don
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.258-267
    • /
    • 2013
  • New incremental learning algorithm using extended data expression, based on probabilistic compounding, is presented in this paper. Incremental learning algorithm generates an ensemble of weak classifiers and compounds these classifiers to a strong classifier, using a weighted majority voting, to improve classification performance. We introduce new probabilistic weighted majority voting founded on extended data expression. In this case class distribution of the output is used to compound classifiers. UChoo, a decision tree classifier for extended data expression, is used as a base classifier, as it allows obtaining extended output expression that defines class distribution of the output. Extended data expression and UChoo classifier are powerful techniques in classification and rule refinement problem. In this paper extended data expression is applied to obtain probabilistic results with probabilistic majority voting. To show performance advantages, new algorithm is compared with Learn++, an incremental ensemble-based algorithm.

Ensemble of Classifiers Constructed on Class-Oriented Attribute Reduction

  • Li, Min;Deng, Shaobo;Wang, Lei
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.360-376
    • /
    • 2020
  • Many heuristic attribute reduction algorithms have been proposed to find a single reduct that functions as the entire set of original attributes without loss of classification capability; however, the proposed reducts are not always perfect for these multiclass datasets. In this study, based on a probabilistic rough set model, we propose the class-oriented attribute reduction (COAR) algorithm, which separately finds a reduct for each target class. Thus, there is a strong dependence between a reduct and its target class. Consequently, we propose a type of ensemble constructed on a group of classifiers based on class-oriented reducts with a customized weighted majority voting strategy. We evaluated the performance of our proposed algorithm based on five real multiclass datasets. Experimental results confirm the superiority of the proposed method in terms of four general evaluation metrics.

Sequence driven features for prediction of subcellular localization of proteins

  • Kim, Jong-Kyoung;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.237-242
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives a valuable information for inferring the possible function of the protein. For more accurate prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper, we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting. The overall prediction accuracy evaluated by the 5-fold cross-validation reached 88.53% for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful for predicting subcellular localization of proteins.

  • PDF

Diagnosing Parkinson's Disease Using Movement Signal Mapping by Neural Network and Classifier Modulation

  • Nikandish, Hajar;Kheirkhah, Esmaeil
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.851-858
    • /
    • 2017
  • Parkinson's disease is a growing and chronic movement disorder, and its diagnosis is difficult especially at the initial stages. In this paper, movement characteristics extracted by a computer using multilayer back propagation neural network mapping are converted to the symptoms of this disease. Then, modulation of three classifiers of C4.5, k-nearest neighbors, and support vector machine with majority voting are applied to support experts in diagnosing the disease. The purpose of this study is to choose appropriate characteristics and increase the accuracy of the diagnosis. Experiments were performed to demonstrate the improvement of Parkinson's disease diagnosis using this method.

Electric Load Signature Analysis for Home Energy Monitoring System

  • Lu-Lulu, Lu-Lulu;Park, Sung-Wook;Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2012
  • This paper focuses on identifying which appliance is currently operating by analyzing electrical load signature for home energy monitoring system. The identification framework is comprised of three steps. Firstly, specific appliance features, or signatures, were chosen, which are DC (Duty Cycle), SO (Slope of On-state), VO (Variance of On-state), and ZC (Zero Crossing) by reviewing observations of appliances from 13 houses for 3 days. Five appliances of electrical rice cooker, kimchi-refrigerator, PC, refrigerator, and TV were chosen for the identification with high penetration rate and total operation-time in Korea. Secondly, K-NN and Naive Bayesian classifiers, which are commonly used in many applications, are employed to estimate from which appliance the signatures are obtained. Lastly, one of candidates is selected as final identification result by majority voting. The proposed identification frame showed identification success rate of 94.23%.

Improving SVM Classification by Constructing Ensemble (앙상블 구성을 이용한 SVM 분류성능의 향상)

  • 제홍모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.251-258
    • /
    • 2003
  • A support vector machine (SVM) is supposed to provide a good generalization performance, but the actual performance of a actually implemented SVM is often far from the theoretically expected level. This is largely because the implementation is based on an approximated algorithm, due to the high complexity of time and space. To improve this limitation, we propose ensemble of SVMs by using Bagging (bootstrap aggregating) and Boosting. By a Bagging stage each individual SVM is trained independently using randomly chosen training samples via a bootstrap technique. By a Boosting stage an individual SVM is trained by choosing training samples according to their probability distribution. The probability distribution is updated by the error of independent classifiers, and the process is iterated. After the training stage, they are aggregated to make a collective decision in several ways, such ai majority voting, the LSE(least squares estimation) -based weighting, and double layer hierarchical combining. The simulation results for IRIS data classification, the hand-written digit recognition and Face detection show that the proposed SVM ensembles greatly outperforms a single SVM in terms of classification accuracy.

Bankruptcy prediction using ensemble SVM model (앙상블 SVM 모형을 이용한 기업 부도 예측)

  • Choi, Ha Na;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1113-1125
    • /
    • 2013
  • Corporate bankruptcy prediction has been an important topic in the accounting and finance field for a long time. Several data mining techniques have been used for bankruptcy prediction. However, there are many limits for application to real classification problem with a single model. This study proposes ensemble SVM (support vector machine) model which assembles different SVM models with each different kernel functions. Our ensemble model is made and evaluated by v-fold cross-validation approach. The k top performing models are recruited into the ensemble. The classification is then carried out using the majority voting opinion of the ensemble. In this paper, we investigate the performance of ensemble SVM classifier in terms of accuracy, error rate, sensitivity, specificity, ROC curve, and AUC to compare with single SVM classifiers based on financial ratios dataset and simulation dataset. The results confirmed the advantages of our method: It is robust while providing good performance.

Moving Object Classification through Fusion of Shape and Motion Information (형상 정보와 모션 정보 융합을 통한 움직이는 물체 인식)

  • Kim Jung-Ho;Ko Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.38-47
    • /
    • 2006
  • Conventional classification method uses a single classifier based on shape or motion feature. However this method exhibits a weakness if naively used since the classification performance is highly sensitive to the accuracy of moving region to be detected. The detection accuracy, in turn, depends on the condition of the image background. In this paper, we propose to resolve the drawback and thus strengthen the classification reliability by employing a Bayesian decision fusion and by optimally combining the decisions of three classifiers. The first classifier is based on shape information obtained from Fourier descriptors while the second is based on the shape information obtained from image gradients. The third classifier uses motion information. Our experimental results on the classification Performance of human and vehicle with a static camera in various directions confirm a significant improvement and indicate the superiority of the proposed decision fusion method compared to the conventional Majority Voting and Weight Average Score approaches.

Classification of Remote Sensing Data using Random Selection of Training Data and Multiple Classifiers (훈련 자료의 임의 선택과 다중 분류자를 이용한 원격탐사 자료의 분류)

  • Park, No-Wook;Yoo, Hee Young;Kim, Yihyun;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.489-499
    • /
    • 2012
  • In this paper, a classifier ensemble framework for remote sensing data classification is presented that combines classification results generated from both different training sets and different classifiers. A core part of the presented framework is to increase a diversity between classification results by using both different training sets and classifiers to improve classification accuracy. First, different training sets that have different sampling densities are generated and used as inputs for supervised classification using different classifiers that show different discrimination capabilities. Then several preliminary classification results are combined via a majority voting scheme to generate a final classification result. A case study of land-cover classification using multi-temporal ENVISAT ASAR data sets is carried out to illustrate the potential of the presented classification framework. In the case study, nine classification results were combined that were generated by using three different training sets and three different classifiers including maximum likelihood classifier, multi-layer perceptron classifier, and support vector machine. The case study results showed that complementary information on the discrimination of land-cover classes of interest would be extracted within the proposed framework and the best classification accuracy was obtained. When comparing different combinations, to combine any classification results where the diversity of the classifiers is not great didn't show an improvement of classification accuracy. Thus, it is recommended to ensure the greater diversity between classifiers in the design of multiple classifier systems.

Face Detection Based on Incremental Learning from Very Large Size Training Data (대용량 훈련 데이타의 점진적 학습에 기반한 얼굴 검출 방법)

  • 박지영;이준호
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.949-958
    • /
    • 2004
  • race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.