• 제목/요약/키워드: Man-in-the-loop Simulation

검색결과 30건 처리시간 0.022초

Integrated Simulation System of Aircraft

  • Wang, Xingren
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.68-71
    • /
    • 2001
  • Integrated Simulation System of Aircraft is a networked virtual synthetic environment. This paper presents hardware-in-the-loop simulation, man-in-the-loop simulation, computer generated aircraft, virtual prototype of aircraft dynamics, and networked simulation system.

  • PDF

OPAL-RT 기반의 Hardware-in-the-Loop Simulation (HILS) 시스템을 이용한 독립운전모드 마이크로그리드 시뮬레이션 (Islanded Microgrid Simulation using Hardware-in-the Loop Simulation (HILS) System based on OPAL-RT)

  • 유형준;김학만
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.566-572
    • /
    • 2013
  • A microgrid is a small scale power system. The microgrid is operated in two operation modes, the grid-connected mode and the islanded mode. In the islanded mode, the frequency of a microgrid should be maintained constantly. For this, the balance between power supply and power demand during islanded mode should be met. In general, energy storage systems (ESSs) are used to solve power imbalance. In this paper, the frequency control effect of a Lithium-ion battery energy storage system (Li-ion BESS) has been tested on the hardware-in-the loop simulation (HILS) system environment.

마이크로그리드용 2기의 TMS320F28335 기반 BESS 제어기 구현 및 Hardware-in-the-Loop Simulation 시스템을 이용한 제어 성능 테스트 (Implementation of Two TMS320F28335 based BESS Controllers for Microgrid and Control Performance Test in the Hardware-in-the-Loop Simulation System)

  • 김남대;유형준;김학만
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.559-564
    • /
    • 2014
  • A microgrid as a small scale power system is operated by the grid-connected mode and islanded mode. It is anticipated that the battery energy storage system (BESS) is able to be applied to the microgrid for stable power control, such as tie-line and smoothing control in the grid-connected mode and voltage and frequency control in the islanded mode. In this paper, a digital signal processor (DSP), Two BESS controllers based on TMS320F28335 of a microgrid are implemented and are tested to show control performance in the hardware-in-the loop simulation (HILS) system.

Hardware-in-the-Loop Simulation을 이용한 3-레벨 NPC 전압형 HVDC 시스템 구현 및 테스트 (Implementation and Test of 3-level NPC VSC-HVDC System using Hardware-in-the-Loop Simulation)

  • 유형준;김남대;김학만
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.343-348
    • /
    • 2014
  • Recently, applications of VSC-HVDC systems to power systems are growing because of their control ability of reactive power. Meanwhile, the hardware-in-the-loop simulation (HILS) based on the real-time digital simulator has been applying to develop and test imbedded controllers and systems in the power industry to decrease costs and to save time. In this paper, a 3-level neutral point clamped (NPC) VSC-HVDC system is modeled and the embedded controllers of the NPC VSC-HVDC system are designed. The designed controllers are implemented by TMS320F28335. The TMS320F28335-based controllers of the NPC VSC-HVDC system are tested using the HILS.

합성환경 하에서의 수중운동체 HILS/MILS 구현 기법 연구 (A Study on Implementation of an Underwater Vehicle HILS/MILS System in Synthetic Environment)

  • 남경원
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.132-148
    • /
    • 2002
  • In this paper, development procedures of an Underwater Vehicle HILS/MILS System in SE(Synthetic Environment) are described. As this System is developed, we can obtain the more powerful tool which can be used to test and verify operational logics and algorithms of an Underwater Vehicle as well as its hardware in various tactical situations.

가상주행시험장(SVPG) 개발: 가상주행시험장의 시스템 구성 및 운영 (Development of the SVPG(Sungkyunkwan Univ. Virtual Proving Ground) : System Configuration and Application of the Virtual Proving Ground)

  • 서명원;구태윤;권성진;신영수;조기용;박대유
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.195-202
    • /
    • 2002
  • By using modeling and simulation. today's design engineers are simultaneously reducing time to market and decreasing the cost of development, while increasing the quality and reliability of their products. A driving simulator is the best example of this method and allows virtual designs of control systems, electronic systems, mechanical systems and hydraulic system of a vehicle to be evaluated before costly prototyping. The objective of this Paper is to develop the virtual Proving: ground using a driving simulator and to show its capabilities of an automotive system development tool. For this purpose, including a real-time vehicle dynamics analysis system, the PC-based driving simulator and the virtual proving ground are developed by using VR(Virtual Reality) techniques. Also ABS HIL(Hardware-In-the-Loop ) simulation is performed successfully.

Dynamic Reference-based Voltage Droop Control for VSC-MTDC System

  • Kim, Nam-Dae;Kim, Hak-Man;Park, Jae-Sae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2249-2255
    • /
    • 2015
  • The use of voltage source converter multi-terminal direct current (VSC-MTDC) systems is anticipated to increase from the introduction of wind farms and super grids in the near future. Effective control of the DC voltage in VSC-MTDC systems is an important research topic. This paper proposes a new dynamic reference-based voltage droop control to control the DC voltage in VSC-MTDC systems more effectively. The main merit of the dynamic reference-based voltage droop control is that it can reduce the steady-state error in conventional voltage droop control by changing references according to the system operating conditions. The performance of the proposed control was tested in a hardware-in-the-loop simulation (HILS) system based on the OPAL-RT real-time digital simulator and four digital signal processing boards.

HILS 환경에서 AC/DC 마이크로그리드의 연계 컨버터 제어기 설계 및 테스트 (Design and Performance Test of Controller of Interlinking Converter in AC/DC Microgrid in Hardware-in-the-Loop Simulation Environment)

  • 지현균;유형준;김학만;이병하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.527-528
    • /
    • 2015
  • 최근 다양한 디지털기기에 따른 DC 부하의 증가와 함께 기존 배전망과 연계하여 운용할 수 있는 AC 그리드와 태양광과 연료전지 같은 DC 전원에 직접적으로 연계하여 운용하는 DC 그리드를 통합하는 AC/DC 마이크로그리드에 대한 연구가 진행되고 있다. 본 논문에서는 AC 그리드와 DC 그리드를 연계 제어하는 연계(interlinking) 컨버터의 제어기를 설계하고 성능을 검토하기 위해 TMS320F28335 DSP(Digital Signal Processor)와 실시간 디지털 시뮬레이터인 eMEGAsim으로 구성된 HILS(Hardware-in-the-Loop Simulation) 시스템을 구축하고 설계된 제어기의 성능을 테스트하였다.

  • PDF

건설장비용 동력전달계의 관성영역에서의 자기학습 제어기법 (Self-Learning Supervisory Control of a Power Transmission System in a Construction Vehicle during Inertia Phase)

  • 최길우;한진오;허재웅;조영만;이교일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.723-729
    • /
    • 2001
  • Electro-hydraulic shift control of a vehicle automatic transmission has been predominantly carried out via an open-loop control based on numerous time-consuming calibrations. Despite remarkable success in practice, the variations of system characteristics inevitably deteriorate the performance of the tuned open-loop controller. As a result, the controller parameters need to be continuously updated in order to maintain satisfactory shift quality. This paper presents a self-learning algorithm for automatic transmission shift control in a construction vehicle during inertia phase. First, an observer reconstructs the turbine acceleration signal (impossible to measure in a construction vehicle) from the readily accessible turbine speed measurement. Then, a control algorithm based on a quadratic function of the turbine acceleration is shown to guarantee the asymptotic convergence (within a specified target bound) of the error between the actual and the desired turbine accelerations. A Lyapunov argument plays a crucial role in deriving adaptive laws for control parameters. The simulation and hardware-in-the-loop simulation (HILS) studies show that the proposed algorithm actually delivers the promise of satisfactory performance despite the system characteristics variations and uncertainties.

  • PDF