• Title/Summary/Keyword: Manufacturing 3.0

Search Result 1,919, Processing Time 0.03 seconds

Study on the Coke Oven Emissions in Cokes Using and Manufacturing Workplaces (코크스 제조 및 사용 공정에서의 코크스오븐 배출물질 연구)

  • Lee, Jong-chun;Ahn, Kyu-Dong;Cho, Kwang-Sung;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 2001
  • This study was performed to evaluate the coke oven emissions (COE) and polynuclear aromatic hydrocarbon levels in coke manu-facturing industry, secondary lead smelting industry and glass bottle manufacturing industry. 1. There were no significant difference between the means of personal samples and area samples by the types of industry(p>0.05). The levels of airborne total particulates of the secondary lead smelting industry was the highest($2.30mg/m^3$), and those of the coke manu-facturing industry and glass bottle manu facturing industry were $1.95mg/m^3$ and $1.37mg/m^3$. The concentration of COE was the highest in the glass bottle manufacturing industry($0.79mg/m^3$), and in order of $0.19mg/m^3$ in the coke manufacturing industry and $0.06mg/m^3$ in the secondary lead smelting industry. COE/total particulates(%) was highest in the glass bottle manufacturing industry(58.1%) and in order of 10.3% in the coke manufacturing industry and 3.1% in secondary lead smelting industry. There were significant differences in the total particle concentration and COE by the types of industry(p<0.05). 2. The levels of airborne total particulates was the highest at the smelting process of secondary lead smelting industry($2.30{\pm}0.72mg/m^3$), and the lowest at the smelting process of glass bottle manufacturing industry ($0.99{\pm}1.22mg/m^3$) Concentration of COE was the highest at the casting process of glass bottle manufacturing industry ($1.09{\pm}1.15mg/m^3$), the lowest at the smelting process of secondary lead smelting industry ($0.06{\pm}0.03mg/m^3$). The COE/total particulates(%) was the highest at the casting process of glass bottle manufacturing industry($65.9{\pm}20.5%$), and the lowest at the smelting process of secondary lead smelting indusry($3.1{\pm}2.7%$). 3. There were positive correlations between level of The airborne total particulates and concentration of COE in coke manufacturing industry and glass bottle manufacturing industry (p<0.05), but negative correlation in secondary lead smelting industry. 4. The numbers of case and rates that over the Threshold Limit Values(TLVs) were 24 (77.4%)cases in glass bottle manufacture, 14(23.7%) cases in the coke manufacturing industry and no one case in secondary lead smelting industry. Total numbers of case and rates that over TLVs were 38( 35.5%) cases. 5. The limit of detection(LOD) for PAH was $10{\mu}g/ml$ in standard sample. All PAH levels of the cokes manufacturing industry and the secondary lead smelting industry and the glass bottle manufacturing industry were trace or not to detect.

  • PDF

INTERFACIAL REACTION AND STRENGTH OF QFP JOINTS USING SN-ZN-BI SOLDER WITH VARYING LEAD PLATING MATERIALS

  • Iwanishi, Hiroaki;Imamura, Takeshi;Hirose, Akio;Ekobayashi, Kojirou;Tateyama, Kazuki;Mori, Ikuo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.481-486
    • /
    • 2002
  • We have investigated the effects of plating materials for Cu lead (Sn-lOPb, AwPdJNi, Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu) on properties of QFP joints using a Sn-8Zn-3Bi solder. The results were compared with the joints using Sn-3. 5Ag-0. 7Cu and Sn-37Pb solders. As a result, the joints with the Sn-3.5Ag, Sn-3Bi and Sn-0.7Cu plated Cu lead had the reliability comparable to those of the Sn-3.5Ag-0.7Cu and Sn-37Pb soldered joints with respect to the joint strength after the high temperature holding tests at 348K to 423k. In particular, the joint with the Sn-3.5Ag plated Cu lead had the best reliability. This is caused by the low growth rate of a Cu-Sn interfacial reaction layer that degrades the joint strength of the soldered joints. Consequently, the Sn-3.5Ag plating was found to be most feasible plating for the Sn-8Zn-3Bi soldered joint.

  • PDF

Analysis of Current National Policy Trends for Enhancing Manufacturing Industry (국가별 제조업 진흥전략 현황 분석)

  • Lee, Hyoung-wook;Bae, SungMin
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.33-36
    • /
    • 2015
  • In recent years, developed and developing country such as U.S., Japan, and China push forward to enhance their manufacturing industry through national policies such as advanced manufacturing(U.S.), Industrie 4.0 (Germany), and Made in China 2025. Also, in Korea, Ministry of Trade, Industry, and Energy(MOTIE) claimed Manufacturing3.0 for encouraging domestic manufacturing industry. Manufacturing industry plays an important role in encouraging economy and employment. In this paper, we survey, analyze and summarize the current national policy for enhancing manufacturing industry.

A Study on Worker Exposure Level and Variation to Asbestos in some Asbestos Industries (일부 석면취급사업장의 석면폭로 농도 및 작업환경관리 기준에 관한 연구)

  • Oh, Se Min;Shin, Yong Chul;Park, Doo Yong;Park, Dong Uk;Chung, Kyou Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.100-109
    • /
    • 1993
  • This study was performed to evaluate the asbestos exposure levels and variations in textile, brake lining manufacturing and slate manufacturing industries. For this study, fifteen plants of brake lining manufacturing industry, 7 plants of textile industry, and 2 plants of slate manufacturing industry were selected and surveyed. Geometric means (GMs) of airborne asbestos concentrations in textile, brake lining manufacturing, and slate manufacturing industries were 1.42 f/cc(0.07-6.1O f/cc), 0.19 f/cc(<0.01-2.67 f/cc) and 0.08 f/cc(0.02-0.67 f/cc), respectively. In textile industry overall GMs of airborne asbestos concentrations in plants with less than 50 workers and in plants with more than 50 workers were 1.60 f/cc and 0.3 f/cc, respectively. Therefore, the size of plant showed some difference in the airborne asbestos concentrations. Three out of 7(42.9%) exceed the Korean standard, 2 f/cc, and every plant exceed the USA standard, 0.2 f/cc of the OSHA-Permissible Exposure Level(OSHA-PEL). Especially, one plant showed the highest average concentration of 2.87 f/cc. In brake lining manufacturing industry, the plants with less than 50 workers showed 0.22 f/cc. The plants with more than 50 workers showed 0.18 f/cc. All plants showed the exposure level below the Korean standard. Five of 15 (33.3%) were above the OSHA-PEL. One plant showed the highest average concentraton of 0.84 f/cc. In slate manufacturing industry, the average exposure level was 0.08 f/cc, and all of the plants were below the Korean standard and the OSHA-PEL.

  • PDF

A Study on the Characteristic of Airborne Lead Particle Size by Industry (업종별 공기중 납입자의 입경별 분포특성에 관한 조사 연구)

  • Park, Dong Wook;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.160-171
    • /
    • 1995
  • The size characteristics of lead particle which is one of the important factors associated with absorption of lead were ignored in establishing lead standard. This study was conducted to investigate distribution of lead particles by operation of industry. Aerodynamic Mass Median Diameters (MMD) of airborne lead particles in the battery and litharge manufacturing industry were $14.1{\mu}m$ and $15.1{\mu}m$, respectively. There was no significant difference between those two values(p>0.05). However, the diameters in radiator manufacturing and secondary smelting industry were $1.3{\mu}m$, $4.9{\mu}m$, respectively. Those were significantly smaller than the particle sizes in other industries(p<0.05). Total lead concentrations in the secondary smelting industry were higher than those in the battery and litharge manufacturing industry. Total lead concentrations in other industries except radiator manufacturing industry exceeded the standard of $50{\mu}g/m^3$. Only radiator manufacturing industry indicated lead concentrations significantly lower than those in other industries(p<0.05). Concentrations of lead particles smaller than $1{\mu}m$ defined as respirable fraction by OSHA's CPA model assumption were $72.4{\mu}g/m^3$ in the secondary smelting industry, exceeding $50{\mu}g/m^3$. The relationship of concentrations between total lead and lead of particles smaller than $1{\mu}m$ was log Y = 0.46 logX + 0.06(n=119, $r^2=0.44$, p=0.0001). Relationship of respirable lead concentrations between OSHA and ACGIH was significantly detected in the litharge and battery manufacturing industry(p=0.0001), but was not significant in the radiator(p=0.2720) and secondary smelting manufacturing industry(p=0.2394). As MMDs of lead particles generated in industry were small, difference of respirable lead concentration between OSHA and ACGIH became smaller. There was a significant difference between concentrations respirable lead defined by two organizations such as OSHA and ACGIH in the battery and litharge manufacturing industry. Average concentration of respirable lead by ACGIH definition was 43.3 % of total lead in secondary smelting and 48.9 % in radiator manufacturing industry, and lower fractions were indicated in battery and litharge manufacturing industry. Relationships of total lead with IPM, TPM, and RPM were significant respectively(p=0.0001) and lead concentrations by particle size could be estimated using this relationship. Linear regression equation between total lead concentration(X) and ACGIH-RPM concentration(Y) was log Y = 0.76 log X - 0.40($r^2=0.89$, p=0.0001).

  • PDF

The Convergence between Manufacturing and ICT: The Exploring Strategies for Manufacturing version 3.0 in Korea (제조업과 정보통신기술의 융합: 스마트 팩토리 4.0에 기반한 한국 제조업 3.0 성공 전략)

  • Yim, Myung-Seong
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.219-226
    • /
    • 2016
  • The aim of this study is to suggest the strategic implications for manufacturing 3.0 in Korea by reviewing an innovation approaches of German that is a source of manufacturing innovation in Europe. Today, growth potential of korean economy has been weakened by the rise of emerging economies. Furthermore, technological advantage of emerging economies has been strengthened. In this situation, Korea needs to make efforts to enhance global competitiveness. The growth of developing countries provides a new opportunities for Korea for export demand. However, this situation can be recognized as threats for Korea because Korea has to compete with those countries to expand market share. In this regard, reviewing the approaches of manufacturing innovation in German is important because German keeps remaining a high levels of competitiveness in spite of a rise of emerging economies and European recession. To do this, this research can give hints to advance the industrial policy improvements.

The Suggestion for Successful Factory Converging Automation by Reviewing Smart Factories in German (스마트 팩토리 사례를 통한 성공적 공장 융합 자동화 방안 도출)

  • Jeong, Tae-Seog
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.189-196
    • /
    • 2016
  • The ultimate goal of this study is to investigate the cases with respect to smart factory that has been introduced by German government. To do this, the study suggest implications for manufacturing version 3.0 that is one of manufacturing revolution agendas in Korea. The main point of smart factory is the convergence between manufacturing and information and communications technologies such as CPS(Cyber-Physical Systems), MES(Manufacturing Execution Systems), 3D Printer, AI(Artificial Intelligence), and so forth. It is hard to accomplish a complete manufacturing automation. In fact, German government had experienced the failure in pursuing the smart factory agenda. But now the agenda is gradually realized by a variety of success stories from German. Thus, this study is to investigate the well-known success stories that came from German.

Comparison between Ecotoxicity using Daphnia magna and Physiochemical Analyses of Industrial Effluent (산업폐수에 대한 이화학적 분석과 물벼룩 생태독성의 비교)

  • Lee, Sun Hee;Lee, Hak Sung
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1269-1275
    • /
    • 2014
  • Ecotoxicity assessments with the physiochemical water quality items and the bioassay test using Daphnia magna were conducted for 18 selected effluents of 6 industrial types (metal processing, petroleum refining, synthetic textile manufacturing, plating, alcohol beverage manufacturing, inorganic compound manufacturing) being detected toxicity from industrial effluent in Ulsan city, and the interrelationship between total toxic unit (${\Sigma}TU$) and concentrations of Water Quality Conservation Act in Korea were investigated. The average toxic unit(TU) of effluents for 6 industrial types displayed the following ascending order: petroleum refining (0.2) < synthetic textile manufacturing (0.6) < alcohol beverage manufacturing (0.9) < metal processing (1.3) ${\leq}$ inorganic compound manufacturing (1.3) < plating (3.0). These values were less than effluent permission standard. Based on the result of substances causing ecotoxicity, the correlation analysis was not easy because most of heavy metals were not detected or were less than effluent permission standard. Toxicological assessment of industrial effluent was suitable for the evaluation of the mixture toxicity for pollutant. The whole effluent toxicity test using a variety of species was needed for the evaluation of industrial wastewater.

Analysis of Research Trends of Cyber Physical System(CPS) in the Manufacturing Industry (제조 분야 사이버 물리 시스템(CPS) 연구 동향 분석)

  • Kang, Hyung-Muck;Hwang, Kyung-Tae
    • Informatization Policy
    • /
    • v.25 no.3
    • /
    • pp.3-28
    • /
    • 2018
  • The purpose of this study is to analyze the research trends and present future research directions in the field of Cyber Physical System (CPS), a key element in the 4th Industrial Revolution, Industry 4.0, and Smart Manufacturing that are currently promoted as important innovation agenda both at home and abroad. In this study, (1) the concepts of industry 4.0, smart manufacturing and CPS are summarized; (2) analysis criteria of these fields are established; and 3) analysis results are presented and future research direction is proposed. 74 overseas and 8 domestic literature on manufacturing CPS from 2013 to 2017 are identified through 'Google Scholar Search'. Major results of the analysis are summarized as follows: (1) research on a common methodology and framework for the manufacturing CPS needs to be done based on the analysis of the existing methodologies and frameworks of various perspectives; (2) in order to improve the maturity of the manufacturing CPS, it is necessary to study actual deployment and operations of CPS, including the existing systems; (3) it is necessary to study the diagnostic methodology that can evaluate manufacturing CPS and suggest improvement strategy; and (4) as for the detailed model and tool, it is necessary to reinforce research on SCM production planning and human-machine collaboration while considering the characteristics of CPS.

Distribution of Heavy metals in Soil at Iksan 2nd Industrial Complex Area (익산 제 2공단 토양의 중금속 함량 분포 조사)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Moon, Kwang-Hyun;Jang, Kwang-Ho;Kim, Su-Jin;Lee, Seung-Hyeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.250-258
    • /
    • 1999
  • The purpose of this study was to compare heavy metal concentrations in uncontaminated soil with those in soil influenced by industrial activities, and to investigate the relationship between change of heavy metal content and the kind of industry at the Iksan 2nd Industrial Complex that has started since 1995. Soils sampled in 0-3 cm and 3-6 cm soil depth, respectively were analized for content of Cd, Cu, Ni, Pb and Zn. The content of Cd in soil layer of 0 to 3 cm was 0.07-4.37ppm range, average concentration was 0.516ppm and 3-6 cm was 0.07-8.52ppm range, average concentration was 0.380ppm. Area of the chemicals, dyes and metal products manufacturing were higher than the other manufacturing area in Industrial Complex. The content of Cu in soil layer of 0 to 3 cm was 0.61-42.62ppm range, average concentration was 11.087ppm and 3-6 cm was 0.16-35.45ppm range, average concentration was 7.578ppm. Area of the metal products manufacturing were higher than the other manufacturing area in Industrial Complex. The content of Ni in soil layer of 0 to 3 cm was 0.19-15.93ppm range, average concentration was 5.525ppm and 3-6 cm was 0.39-15.59ppm range, average concentration was 5.310ppm. Area of the metal and chemical products manufacturing were higher than the other manufacturing area in Industrial Complex. The content of Pb in soil layer of 0 to 3 cm was 3.10-55.75ppm range, average concentration was 23.543ppm and 3-6 cm was 3.35-46.55ppm range, average concentration was 19.198ppm. Area of the chemicals and metal products manufacturing were higher than the other manufacturing area in Industrial Complex. The content of Zn in soil layer of 0 to 3 cm was 26.50-943.00ppm range, average concentration was 158.329ppm and 3-6 cm was 35.45-882.45ppm range, average concentration was 127.914ppm. Area of the chemicals and metal products manufacturing were higher than the other manufacturing area in Industrial Complex. As the result, this study was to compare Cd, Cu, Ni, Pb, Zn average concentration in uncontaminated soil of world with those in soil, that Cu, Ni were uncontaminated concentration level, Cd was somewhat higher compare with the concentration level of world, Pb and Zn were very higher. Soil contaminated degree of Iksan 2nd Industrial Complex was known a difference by type of industrial activities(chemical, dyes and metal of products)

  • PDF