• Title/Summary/Keyword: Mapping Satellite-1

Search Result 183, Processing Time 0.025 seconds

Impervious Surface Mapping of Cheongju by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 청주시의 불투수면지도 생성기법)

  • Park, Hong Lyun;Choi, Jae Wan;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • Most researches have created the impervious surface map by using low-spatial-resolution satellite imagery and are inefficient to generate the object-based impervious map with a broad area. In this study, segment-based impervious surface mapping algorithm is proposed using the RapidEye satellite imagery in order to map impervious area. At first, additional bands are generated by using TOA reflectance conversion RapidEye data. And then, shadow and water class are extracted using training data of converted reflectance image. Object-based impervious surface can be generated by spectral mixture analysis based on land cover map of Ministry of Environment with medium scale, in the case of other classes except shadow and water classes. The experiment shows that result by our method represents high classification accuracy compared to reference data, quantitatively.

A Study on the Land Cover Classification and Facilities Management of Pusan Port using Satellite data (위성영상을 이용한 부산항만 주변지역 토지피복분류 및 시설물관리 구축 방안)

  • 이기철;김정희;이병환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.59-65
    • /
    • 1998
  • A thematic land cover map of Pusan port area was developed using Landsat satellite TM(Thematic Mapper) image. Two types of digital data which are road and sea water layer are extracted from existing paper map were overlayed over the developed land cover map. SPIN-2(KNR-1000) image was utilized to make a facility map of JaSungDae port. SPIN-2 image, which has a cell resolution of 1.56 m showed higer accuracy than TM image, which has a cell resolution of 30 m for facility mapping. Overall, the techniques of digital mapping using satellite image are very useful, effective and efficient.

  • PDF

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

A Study on Large Scale Digital Mapping Using High Resolution Satellite Images (고해상도 위성영상을 이응한 대축척 수치지도 제작에 관한 연구)

  • 윤홍식;조재명;조정호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.321-326
    • /
    • 2003
  • The subjects of this study are to examine and to apply the methods of making 1:5,000 scale maps using 1m resolution stereo images of IKONOS for the Munsan area of Paju-city where aerial photo surveying cannot possible because of security conditions. GCP(Ground Control Point) were acquired from GPS surveying and were to perform geometric corrections on images. Digital Map used IKONOS stereo images and it worked from the digital analytical stereoplotter. From field investigation, RMSE errors of the plane and vertical positions are estimated to 1.706m and 1.231m, respectively. The plane accuracy is better than an accuracy required by NGIS (national GIS) programs. Local information from field investigation was added and the resulting maps should be good as digital map under the scale of 1/5,000.

  • PDF

A Pilot Project on Producing Topographic Map Using Medium Resolution Satellite Image (중해상도 위성영상을 이용한 지도제작 시험연구)

  • 박희주;한상득;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.373-383
    • /
    • 2001
  • This study conducted pilot mapping project to know the possibility of mapping with medium resolution satellite imageries. For this purpose, mapping experiments were conducted with each stereo model imageries of SPOT, KOMPSAT, and IRS- lC. And positional accuracy, analysis of detectable and describable features, and comparison with existing digital map were checked, possible mapping scale and cost analysis were conducted with these results. Regarding SPOT imagery, digital photogrammetric workstation was used for stereoplotting. Regarding KOMPSAT and IRS-lC imageries, because there were data format support problems. head-up digitizing was performed with ortho imageries rectified with DEMs generated by image matching. The results of experiments show that such features as wide road, river, coast line, etc are possible to detect and depict but many other features are not for SPOT, KOMPSAT, and IRS-lC imageries. On the aspect of mapping, therefore, SPOT is available for 1/50,000 topographic map revision, KOMPSAT and IRS-lC for 1/25.000 topographic map revision.

  • PDF

Automatic Extraction of Land Cover information By Using KOMPSAT-2 Imagery (KOMPSAT-2 영상을 이용한 토지피복정보 자동 추출)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.277-280
    • /
    • 2010
  • There is a need to convert the old low- or medium-resolution satellite image-based thematic mapping to the high-resolution satellite image-based mapping of GSD 1m grade or lower. There is also a need to generate middle- or large-scale thematic maps of 1:5,000 or lower. In this study, the DEM and orthoimage is generated with the KOMPSAT-2 stereo image of Yuseong-gu, Daejeon Metropolitan City. By utilizing the orthoimage, automatic extraction experiments of land cover information are generated for buildings, roads and urban areas, raw land(agricultural land), mountains and forests, hydrosphere, grassland, and shadow. The experiment results show that it is possible to classify, in detail, for natural features such as the hydrosphere, mountains and forests, grassland, shadow, and raw land. While artificial features such as roads, buildings, and urban areas can be easily classified with automatic extraction, there are difficulties on detailed classifications along the boundaries. Further research should be performed on the automation methods using the conventional thematic maps and all sorts of geo-spatial information and mapping techniques in order to classify thematic information in detail.

  • PDF

Tightly-Coupled GNSS-LiDAR-Inertial State Estimator for Mapping and Autonomous Driving (비정형 환경 내 지도 작성과 자율주행을 위한 GNSS-라이다-관성 상태 추정 시스템)

  • Hyeonjae Gil;Dongjae Lee;Gwanhyeong Song;Seunguk Ahn;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.72-81
    • /
    • 2023
  • We introduce tightly-coupled GNSS-LiDAR-Inertial state estimator, which is capable of SLAM (Simultaneously Localization and Mapping) and autonomous driving. Long term drift is one of the main sources of estimation error, and some LiDAR SLAM framework utilize loop closure to overcome this error. However, when loop closing event happens, one's current state could change abruptly and pose some safety issues on drivers. Directly utilizing GNSS (Global Navigation Satellite System) positioning information could help alleviating this problem, but accurate information is not always available and inaccurate vertical positioning issues still exist. We thus propose our method which tightly couples raw GNSS measurements into LiDAR-Inertial SLAM framework which can handle satellite positioning information regardless of its uncertainty. Also, with NLOS (Non-light-of-sight) satellite signal handling, we can estimate our states more smoothly and accurately. With several autonomous driving tests on AGV (Autonomous Ground Vehicle), we verified that our method can be applied to real-world problem.

A Study on the Verifying Structural Safety of Satellite Structure by Coupled Load Analysis (열변형으로 인한 인공위성 관측장비 지향오차 연구)

  • Kim, Sun-Won;Hyun, Bum-Seok;Kim, Chang-Ho;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Satellite structure is distorted by thermal load in orbit. The structural distortion induces the pointing errors of observation unit that is difference between initial pointing direction at ground integration and at in-orbit. In that case, satellite is not able to point along required direction. As observation capability becomes higher, structural distortion due to thermal load should be smaller to achieve successful mission. In this paper, the method to predict pointing error and results are described.

Accuracy Analysis of Ortho Imagery with Different Topographic Characteristic (지역적 특성에 따른 정사영상의 정확도 분석)

  • Jo, Hyun-Wook;Park, Joon-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • Mapping applications using satellite imagery have been possible to quantitative analysis since SPOT satellite with stereo image was launched. Especially, high resolution satellite imagery was efficiently used in the field of digital mapping for the areas which are difficult to produce large-scale maps by aerial photogrammetry or carry out ground control point surveying due to unaccessibility. This study extracted the geospatial information out of consideration for topographic characteristic from ortho imagery of the National Geospatial-intelligence Agency(NGA) in the United States of America and analyzed the accuracy of plane coordinate for ortho imagery. For this purpose, the accuracy according to topographic character by comparison between both extraction data from ortho imagery and the digital topographic maps of 1:5000 scale which were produced by Korea National Geographic Information Institute(NGI) was evaluated. It is expected that the results of this study will be fully used as basic information for ground control point acquisition or digital mapping in unaccessible area.

  • PDF

Preliminary Biotop Mapping Using High-Resolution Satellite Remote Sensing Data

  • Shin, Dong-Hoon;Lee, Kyoo-Seock
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.856-858
    • /
    • 2003
  • Biotop map can be utilized in the urban area for nature conservation and impact assessment for the proposed activities. High resolution satellite data such as IKONOS and KOMPSAT1-EOS were used to classify land use activities in biotop mapping. After land use classification, field -check was done to survey the wildlife and vegetation. These maps were combined and the boundaries were delineated to produce the biotop map. Within the boundary the characteristics of each polygon were identified, and named. This study was carried out at Daedok Science Town in Taejeon Metropolitan Area. The purpose of this study is to produce the biotop map using high resolution remote sensing data together with other ground data.

  • PDF