• Title/Summary/Keyword: Marangoni Convection

Search Result 34, Processing Time 0.024 seconds

A study of Heat Transfer Enhancement by Temperature Driven Marangoni Convection (온도차 마랑고니 대류에 의한 열전달 촉진에 관한 연구)

  • 김종윤;이동호;박종화;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.795-801
    • /
    • 2003
  • The primary object of this study is to obtain a basic knowledge of heat transfer enhancement mechanism as affected by temperature driven Marangoni convection. Experiments is achieved to visualize the enhanced heat transfer phenomena by the effect of Marangoni convection through the laser holographic interferometry. Also Nusselt Number is introduced for the relation of Marangoni Number.

INFLUENCE OF CONSTANT HEAT SOURCE/SINK ON NON-DARCIAN-BENARD DOUBLE DIFFUSIVE MARANGONI CONVECTION IN A COMPOSITE LAYER SYSTEM

  • MANJUNATHA, N.;SUMITHRA, R.;VANISHREE, R.K.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.99-115
    • /
    • 2022
  • The problem of Benard double diffusive Marangoni convection is investigated in a horizontally infinite composite layer system consisting of a two component fluid layer above a porous layer saturated with the same fluid, using Darcy-Brinkman model with constant heat sources/sink in both the layers. The lower boundary of the porous region is rigid and upper boundary of the fluid region is free with Marangoni effects. The system of ordinary differential equations obtained after normal mode analysis is solved in closed form for the eigenvalue, thermal Marangoni number for two types of thermal boundary combinations, Type (I) Adiabatic-Adiabatic and Type (II) Adiabatic -Isothermal. The corresponding two thermal Marangoni numbers are obtained and the essence of the different parameters on non-Darcy-Benard double diffusive Marangoni convection are investigated in detail.

Visualization of Marangoni Convection Behavior between Two Surfactant Dropwises in the Process of Steam Absorption (증기흡수시(蒸氣吸收時) 계면활성제액적간(界面活性劑液滴間)에 발생(發生)하는 마랑고니대류거동(對流擧動)의 가시화(可視化))

  • Rie, D.H.;Choi, K.K.;Kashiwagi, T.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-71
    • /
    • 1992
  • In most absorption machines, absorption enhancement has been achieved by adding small amount of surfactant additive, which introduced the surface tension difference between absorbent and surfactant droplets in the vapor absorption. The aim of this study is to understand a basic mechanism of Marangoni convection and its effectiveness in the vapor absorption enhancement. In this study, nonflowing aqueous solution of LiBr 60 mass% was exposed to saturated water vapor under the condition that two dropwises surfactant were fixed on the absorbent surface. Our experiments achieved to visualize the enhanced heat and mass transfer phenomena by the effect of Marangoni convection through the laser holographic interferometry. Also, Marangoni convection behavior was obtained by using tracer method.

  • PDF

Principle of Exchange of Stabilities in the Marangoni Convection System (Marangoni 대류계에서의 안정성 교환의 원리)

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.262-265
    • /
    • 2009
  • For the initially quiescent fluid layer, the principle of the exchange of stabilities for the Marangoni convection due to the impulsive temperature change is proven analytically. Under the linear stability theory, the temperature and vertical velocity disturbances are express as the liner combination of the orthogonal functions. It is shown that the growth rate of the temperature disturbance is the real function for all positive Marangoni numbers.

Instability Analysis of Marangoni Convection for $NH_3-H_2O$ Absorption Process Accompanied by Heat Transfer (열전달을 수반하는 $NH_3-H_2O$ 흡수과정에서의 Marangoni 대류 불안정성 해석)

  • 김제익;최창균;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2003
  • Convective instability driven by surface tension is analyzed in an initially quiescent water absorbing ammonia gas with heat transfer using the linear stability analysis. The propagation theory is adapted to find the critical conditions of the onset of Marangoni convection. In this theory, the solutal penetration depth is chosen as the length scale factor. The results show that the liquid layer becomes more stable with decreasing the Schmidt number and increasing the Lewis number. It is also found that there is a critical Biot number to make the liquid layer be most unstable, and there is a linear relationship between the thor-mal Marangoni number and the solutal Marangoni number.

Onset of Marangoni Convection in a Ternary Mixture with Surfactant (계면활성제가 포함된 삼성분계 해석을 통한 마란고니 대류 발생 연구)

  • 김제익;강용태;최창균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.964-969
    • /
    • 2003
  • The objective of this study is to investigate the effect of surfactant on the onset of Marangoni convection adapting a non-linear surface equation of state. The surface tension gradient with respect to the absorbate concentration, ${\gamma}$, is linearly related to the surface concentration of a surfactant with a coeffcient $x_{A}$. The numerical results show that the role of the initial surfactant concentration to Marangoni instability changes from the stabilizer to the destabilizer depending on the change of the sign of $x_{A}$ from negative to positive. It is concluded that for $x_{A}$>0 there is a critical modified Marangoni number of surfactant $M_{Ac}$ $^{*}$ above which liquid layer is always unstable against long wave disturbances.rbances.

Noncondensable Gas Effects on the Marangoni Convection (마랑고니 대류에 미치는 불응축성가스의 영향)

  • Rie, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.510-518
    • /
    • 1996
  • The study presents experimental and theoretical analysis focusing on the infulence of a noncondensable gas upon the absorption enhancement that is obtained by Marangoni convection generated by the addition of the surfactant. The shadowgraph method is adopted in this visualization. As a result of absorption phenomena with shadowgraph photos, the different patterns of Marangoni convection cells are observed in accordance with the various amounts of noncondensable gas. Furthermore, non dimensional number K(Ma/Ra) is introduced to calculate the value of surface tension difference theoretically for the comparison with the various amount of non condensable gas in absorber.

  • PDF

Experimental Study on Rayleigh-Benard-Marangoni Natural Convection using IR Camera (열화상카메라를 이용한 Rayleigh-Benard-Marangoni 자연대류 실험 연구)

  • Kim, Jeongbae
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Rayleigh-Benard-Marangoni (RBM) convection have been artificially made for application of various engineering fields. For a relatively larger circular container, natural convection experiments were carried out to reveal and show the flow characteristics with engine oil (SAE30) using IR camera. IR camera has captured the temperature distribution on the free surface. From these experiments, it was confirmed that it was possible to quantitatively analyze the occurrence characteristics of RBM flow clearly from the thermal images taken with IR camera. As the aspect ratio increased, both the number of internal and external cavities increased. And found that the criteria of RBM flow generation proposed through previous experiments performed for small-sized containers are also very effective with the results on larger circular container.

Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity (모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성)

  • 이진호;이동진;전창덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.

Marangoni Convection Effects on Crystal Growth (결정 성장에서 Marangoni 대류의 영향)

  • 강승민;최종건;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.77-82
    • /
    • 1992
  • When a crystal is grown by FZ process, the melt zone is located at between the solid of upper and lower side and is kept by the solid-liquid interface tension. On the surface of the melt zone, a surface tension gradient is occured by the difference of temperature and solute concentration, it is the driving force of marangoni flow. The crystal even in the steady state growth can become imperfect for the dislocation distribution and the solute concentration in the peripheral region of the crystal are higher than those in the inner part and the probability of the formation of the defects such as voids, bubble penetration, secondary phase creation and crack is high near the solid-liquid interface. This is because the solid -liquid interface becomes irregular because of the local variation of temperature in that region due to marangoni convection.

  • PDF