• Title/Summary/Keyword: Mariculture Management Area

Search Result 4, Processing Time 0.032 seconds

Feasibility of Changing or Canceling Designated Mariculture Management Areas in Ongjin-gun, Korea (옹진군 어장관리해역 해제 및 변경 타당성 평가)

  • Kang, Sungchan;Kim, Hyung Chul;Hwang, Un-Ki;Sim, Bo-ram;Kim, Chung-sook;Lee, Won-Chan;Hong, Sokjin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.576-588
    • /
    • 2017
  • Some of the mariculture grounds near Ongjin-gun, Korea, were designated as mariculture management areas in 2007. Areas are so designated when the environmental quality of the mariculture ground deteriorates or there is an outbreak of hypoxia or harmful red tide that kills mariculture organisms. We surveyed the water and sediment quality and examined the mortality of mariculture organisms in the Ongjin-gun mariculture area. In a survey conducted in 2016, the water quality was better than the environmental quality standards for mariculture grounds, excepts for dissolved inorganic nitrogen, and the sediment quality was good. However, there was still mortality of mariculture organisms in some of the designated management areas. The areas that met the environmental quality standards should be delisted and the areas in which we observed mortality should be classified as management areas. This will enable the sustainable development of aquaculture and preserve healthy mariculture grounds.

A Study of Technical Development of Mariculture in the Coastal Water (천해양식어업발달과정에 관한 연구 - 기술개발활동을 중심으로 -)

  • Choi, Jeang-Yoon
    • The Journal of Fisheries Business Administration
    • /
    • v.16 no.1
    • /
    • pp.91-124
    • /
    • 1985
  • Mariculture is contrasted with inland aqua-culturing fisheries. It is defind as the Industry of rearing Aquaorganism in limited coastal area relatively shallow in depth. Then, It's coming into being realization of Mariculture in it is long in history that Mariculture was realized in Korea. But it is from the early part of 1960s, that this industry has normally developed. Owing to 200 miles economy-zone problems of coastal countries, the development of deep sea fishing was limited, so the Korean Government has now appreciated the importance of cultured industries in the field of coastal fisheries. And the Korean Mariculture the output of which was only 18, 000 M/T in '60s attained 540, 000M/T in 1980s, has now occupied its relative importance in Korean Fisheries Industry. So the purpose of this report is to suggest the prospect of technical development of mariculture in the future of Korea, through the analysis of the various problems that affect upon the individual management '||'&'||' fishing ground utilization, along with the appreciation of "how to extend of those technical innovation" and "how the fishermen's technique level is extended at this stage. According to this study, the result is summarized as follows. First, Maricultural technique is classified into 8 sub-techniques as follows, as shown in fig. 1.Fig. 1. The Formation structure of mariculture technique Second, the change of technical method of mariculture in coastal area of Korea has made as 5 stages; 1) Scattering of culturing organism 2) Culturing by putting stone and installing bamboo 3) Culturing by installing rope and seeding 4) Culturing of putting objectives in cages 5) Culturing fish by feed Third, the maricultural fisheries of Korea has about 70 years long in history. It began from 1910s. But at that time there was no special technique in aquaculture and its technique was confined in searching out the object of species. The species was laver, oyster ect.Forth, although realization of mariculture in Korea has been long time, it is of late from 1960s that this has been industrial with normal development, and its technique of mariculture has mainly has developed from 1970s. Its result not only contributed to the high growth in Korean ecconomy along with the well balanced development between industires, but also it played a great role for the resolution of nation's food problem. Especially maricultural production has shown its sustained annual increase of 13.8% during the last 20 years. So the portion of mariculture among total fisheries stucture was extended from 4.1% in the early 1960s to 22.4% in 1980s.Fifth, it could be safely said that such development in maricultural field is resulted from the activity of aquacultural institutes such as Fisheries Reseach '||'&'||' Development production of major kinds such as Oyster, Sea-mustard, and Laver etc. As well as in the innovation of aquaculturing method with synthetic fiber utilization. FRDA has played important role in the efficient propargation of new aquacultural technique.Sixth, as for the change in aquaculture structure and its during period between 1970s and 1980s, the private management participation shown 25% increase from household number of 45, 173 to 56, 268 in total number. And in the respect of the management scale, of their management decreased, while it showed an increase in relative large scale management, the increase over 3 employees compared with other fisheries field between '70s and 80s. This must be an major trait to be recorded, Now the data above mentioned are shown as in table 1 and 2.Table 1. The maricultural fishing ground development situation in 982.Table 2. The mariculture management as seen in the employmnet size in high seasion.Owing to the technical innovation, of the mariculture in coastal area new income of fishermen increased and it also is true that the number of fishermen participating in its industrialization increased. But the problem being from now on is the self-discharge of the destruction fishing ground considered resulted from rapid expansion in aquaculture industry and the preventive system of sentility of fishing ground. sentility of fishing ground.

  • PDF

Environmental Characteristics of Seawater and Sediment in Mariculture Management Area in Ongjin-gun, Korea (옹진군 어장관리해역의 수질 및 퇴적물 환경 특성)

  • Kim, Sun-Young;Kim, Hyung-Chul;Lee, Won-Chan;Hwang, Dong-Woon;Hong, Sok-Jin;Kim, Jeong-Bae;Cho, Yoon-Sik;Kim, Chung-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.570-581
    • /
    • 2013
  • To improve productivity of aquaculture animals with management of culturing grounds, survey of mariculture management area in Ongjin-gun about water quality and sedimentary environment had been conducted on June, August and November in 2011. Water temperature in surface and bottom waters ranged from 9.49 to $24.14^{\circ}C$. Salinity and dissolved oxygen concentrations were in the range of 23.19~31.49 and 5.48~9.36 mg/L, respectively, depending on the variation of water temperature. The average concentration of COD was 1.57 mg/L and the concentrations of DIN and DIP showed entirely low level. As the result of grain size analysis, sand(56.66 %) and silt(34.60 %) were predominated. The Mz of sediment showed a variation of 2.59 to $6.62{\O}$ and sorting appeared to be poorly sorted. The concentrations of COD and IL in surface sediment ranged from 1.00 to $11.03mg/g{\cdot}dry$ and 0.72 to 5.29 %, respectively, which showed relatively good positive correlations. On the environmental assessment of trace metals in surface sediment, geoaccumulation index ($I_{geo}$) class indicated that sediments were not contaminated by most of metallic elements except Cr and As. Our result implies that this study area showed good water quality and sediments were not polluted by organic matters and metallic elements.