• Title/Summary/Keyword: Marx Generator

Search Result 37, Processing Time 0.028 seconds

Solid State MARX Generator Using IGBTs and EMTP simulations (IGBT 스위치를 이용한 전력용 반도체 Marx Generator와 EMTP 시뮬레이션)

  • Sung, Young-Hun;Lee, Keun-Yong;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1701-1702
    • /
    • 2006
  • 기존의 Gap switch를 이용한 Marx generator는 트리거-펄스 발생회로가 따로 필요하여 복잡한 구조를 가질 뿐만 아니라, 스위치의 짧은 수명과 스위치 내부의 스파크전류의 Jitter 현상, 그리고 순차적인 스위치 turn-on과 스위치 내외부의 인덕턴스로 인한 전압 상승시간의 지연 등의 단점을 가지고 있다. 본 논문에서는 이러한 단점들을 해결하기 위해 기존의 Gap switch대신 전력용 반도체 소자인 IGBT(Insulated Gate Bipolar Transistors) 스위치를 이용한 Marx generator를 제안하고, 제안된 회로의 동작을 구현하기 위해 전력계통용 전자기과도현상 해석프로그램인 EMTP(Electromagnetic Transient Program)를 사용하여 시뮬레이션 하여 IGBT스위치가 이상적인 동작을 할 때 얻어지는 이점을 알아보기로 한다.

  • PDF

Induction Voltage Adder for High Power Pulse Generator (유도전압합성기를 이용한 고전압 펄스발생기 설계)

  • Yang, Jong-Won;Shin, Jin-Woo;Ryu, Han-Young;Heo, Hoon;Lee, Woo-Sang;Kim, Chang-Gu;Nam, Sang Hoon;So, Joon-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.703-711
    • /
    • 2013
  • In this paper, we have proposed high power generator with Induction Voltage Adder of three cells. IVA which has n cells can generate n-th times high power pulse, is a more stable system than Marx generator in the view of breakdown. We applied amorphous metal magnetic cores as an energy storing material for IVA rather than ferrite cores because of their higher magnetic flux swing to make it more compact system and the loss of it was also considered in the design. For driving the IVA, we design Blumlein pulse generators which are filled with pure water for high dielectric constant and high breakdown field strength, and triggered by single Marx generator. We have presented the PSPICE simulation and its test result.

A Damped Sinusoidal Electromagnetic Pulse Generator using a Charged Line (충전선로를 이용한 Damped Sinusoidal 전자기펄스 발생장치)

  • Ryu, Ji-Heon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.136-142
    • /
    • 2006
  • A damped sinusoidal electromagnetic pulse generator was designed, fabricated and tested. The pulse generator consisted of an oscillator(a spark gap switch and an initially charged low impedance line) and a high impedance antenna. This generator was capable of producing damped sinusoidal pulses at closure of the spark gap switch. A Marx generator was employed to supply the Pulse generator with high voltage pulses. While the pulse generator was provided with the high voltage pulses of 200kV from the Marx generator, its output power was maximized by controlling the pressure of the gas contained in the spark gap switch. The output power of the damped sinusoidal electromagnetic pulse oscillator was 1.3GW and the amplitude of electric field radiated from the pulse generator was 4kV/m at the range of 25m.

Compact Size Nanosecond Rise Time Hgh Voltage Pulse Generator (소형 나노초 입상 고전압 펄스발생장치)

  • Park, Sung-Lok;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1819-1821
    • /
    • 1996
  • A compact size high voltage pulse generator with nanosecond rise time has been fabricated and investigated experimentally. It can be reduced the inductance of the generator by fixing the Marx generator components and pulse forming network components into a single cylindrical unit. As a result, it can be obtained nanosecond rise time about $8{\sim}10[ns]$ and pulse width of several hundred nanoseconds from the modified Marx pulse generator. And parametric studies showed that the rise time of the output pulse was depended little on the change of the load resister and the charging capacitor while the pulse width of the output pulse was depended greatly upon the change of the load resistor and the charging capacitor.

  • PDF

Fabrication and Identification of Marx Generator for the Design of High Power Backward Wave Oscillator (대 전력 후진파 발진기의 설계를 위한 마르크스 발생기의 제작 및 검증)

  • Kim, Won-Seop;Hwang, Nak-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.391-399
    • /
    • 1999
  • We have designed the backward wave oscillator, a power-pulsed generator oscillated at 20 GHz has higher frequency than current one. An absolute instability linear analysis was used for the purpose of designing the slow wave structure. A large diameter (D/$\lambda$=4.8) of the slow wave structure was adopted to prevent the breakdown brought about by the increase of power density. We have fabricated a marx generator, pulse forming line and diode. And the development of a compact pulsed power generator with short period and low amplitude is expected.

  • PDF

Optical Diagnostics for Pulse-discharged Plasma by Marx Generator and Its Application for Modifications of Hemoglobin and Myoglobin Proteins

  • Park, Ji Hoon;Attri, Pankaj;Hong, Young June;Park, Bong Sang;Jeon, Su Nam;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.176.2-176.2
    • /
    • 2013
  • Property of optical diagnostics for pulse-discharged plasma in liquid and its biological applications to proteins are investigated by making use of high voltage Marx generator. The Marx generator has been consisted of 5 stages, where each charging capacitor is 0.5 ${\mu}F$, to generate a high voltage pulse with rising time of $1{\mu}s$. We have applied an input voltage of 6 kV to the each capacitor of 0.5 ${\mu}F$. High voltage pulsed plasma has been generated inside a polycarbonate tube by a single-shot operation, where the breakdown voltage is measured to be 7 kV, current of 1.2 kA, and pulse width of ~ 1 ${\mu}s$ between the two electrodes of anode-cathode whose material is made of tungsten pin, which are immersed into the liquids. We have investigated the emitted hydrogen lines for optical diagnostics of high voltage pulsed plasma. The emission line of 656.3 nm from $H-{\alpha}$ and 486.1 nm from $H-{\beta}$ have been measured by a monochromator. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium conditions, the electron temperature and density of the high voltage pulsed plasma in liquid could be obtained by the Stark broadening of optical emission spectroscopy. For the investigation of the influence of pulsed plasma on biological proteins, we have exposed it onto the proteins such as hemoglobin and myoglobin. The structural changes in these proteins and their analysis have also been obtained by circular dichroism (CD) and ultraviolet (UV) visible spectroscopy.

  • PDF

A New Generation of Biocompatible Pulse-discharged Plasma by Marx Generator and Its Application on the Biomolecules

  • Park, Ji-Hun;Attri, Pankaj;Hong, Yeong-Jun;Kumar, Naresh;Kim, Sang-Yeop;Kim, Yeong-Jo;Lee, Gu-Hyeop;Lee, Seung-Mok;Park, Bong-Sang;Jeon, Su-Nam;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.240.2-240.2
    • /
    • 2014
  • Characteristics of pulse-discharged plasma in liquid and its biological applications to proteins are investigated by making use of high voltage Marx generator. The Marx generator has been consisted of 5 stages, where each charging capacitor is $0.5{\mu}F$ to generate a high voltage pulse with rising time of $1{\mu}s$. We have applied an input voltage of 6 kV to the each capacitor of $0.5{\mu}F$. The high voltage pulsed plasma has been generated inside a polycarbonate tube by a single-shot operation, where the breakdown voltage is measured to be 7 kV, current of 1.2 kA, and pulse width of ${\sim}1{\mu}s$ between the two electrodes of anode-cathode made of stainless steel, which are immersed into the liquids. For the investigation of the influence of pulsed plasma on biomolcules, we have focused on the amino acids, DNA, proteins, cell and cholesterol.

  • PDF

A Study on Optimizing Energy Transfer of Capacitive Switching Antenna (Capacitive Switching Antenna의 최적 에너지 전달에 관한 연구)

  • Kim, Jin-Man;Bang, Jeong-Ju;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • In this paper we describe the maximum energy transfer of CSA(Capacitive Switching Antenna). CSA which is radiated antenna system contain energy storage and switch, antenna needs to high voltage source for electrical field radiation experiment. In this experiment we employed Marx generator as a charging source. CSA can radiate electrical field more efficiently by varying antenna capacitance. The electromagnetic generation system which was using CSA has some advantages which are more simple and more effective compared to exist system. We evaluated the performance of electromagnetic wave generating system using CSA. As a result UWB gain of system is 0.47, It is higher level than exist system is 0.3. Radiated electrical field strength at 1m is 70kV/m. It is measured by D-dot sensor and gap distance is 20mm. Center frequency of CSA is approximately 25MHz. When vary the antenna gap distance from 50mm to 20mm, we can find the radiation field strength is decrease and antenna center frequency is increased. We also simulated the energy transfer efficiency to compare with experiment result. Consequentially, CSA needs to appropriate capacitance which is similar value from marx generator for maximum energy transfer, and gap is less than 1mm to increase the CSA capacitance.

Analysis and Performance Improvement of Integrated E1 Pulse Generator for EMP Protection Performance Test (EMP 방호성능 시험용 통합형 E1 펄스 발생장치 분석 및 성능 개선)

  • Kim, Young-Jin;Kang, Ho-jae;Jeong, Young-Kyung;Youn, Dong-Gi;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.415-423
    • /
    • 2018
  • We herein investigate the E1 pulse for evaluating the conducted performance of transmission lines connected to the electromagnetic pulse protection facilities against a conducted high-altitude electromagnetic pulse threat exposed to an external electromagnetic environment. The existing E1 pulse generator uses the Marx generator high-voltage step-up method; however, in this research, we used the Tesla transformer method to easily change the broadband output voltage(30 to 350 kV). We also analyzed the controller, power supply, high-voltage booster, and pulse-shaping device. The E1 pulse performance using the Tesla transformer was predicted through simulations and validated by measurements.