• Title/Summary/Keyword: Material Modeling

Search Result 1,785, Processing Time 0.053 seconds

Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles (친환경 연료전지 자동차용 Type III 수소 압력용기의 구조성능 평가를 위한 유한 요소 해석)

  • Son, Dae-Sung;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.938-945
    • /
    • 2012
  • To design and estimate material failures of Type III pressure vessels, which have excellent stability and performance, various modeling techniques have been introduced. This paper provided a hybrid modeling technique composed of ply-based modeling for a cylinder part and laminate-base modeling technique for a dome part for enhancing modeling efficiency. The ply-based modeling technique provided accurate ply stresses directly for predicting material failure, on the other hand, additional manipulations in stress calculations, which may cause some errors, were needed for the case of the laminate-based modeling technique. The ply stresses in fiber, transverse and in-plane shear directions were compared with the corresponding material strengths to predict material failure.

Modeling of Eco-Industrial Park (EIP) through Material Flow Analysis (MFA) (물질흐름분석을 통한 생태산업단지의 모델링)

  • Lee, Seungjun;Yoo, ChangKyoo;Choi, Sang Kyo;Chun, Hee Dong;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.579-587
    • /
    • 2006
  • Recently, each country has been trying to promote Eco-Industrial Park (EIP) development for industrial sustainability. Technological modeling is required to realize EIP practically even though the project contains the political concerns for many companies, government, and self-governing bodies. The four main technologies of the EIP developments include energy exchange, material flow analysis, water pinch, and life cycle assessment. Material flow analysis (MFA) methodology can be utilized in EIP modeling in view of the fact that the analysis of material flows and the optimized modeling are major purposes for the technological modeling of EIP. Through MFA methodology in POHANG EIP project, how to apply MFA modeling to EIP modeling and how to utilize software for MFA modeling are shown in this research.

Crack Analysis of Piezoelectric Material Considering Bounded Uncertain Material Properties

  • Kim, Tae-Uk;Shin, Jeong-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • Piezoelectric materials are widely used to construct smart or adaptive structures. Although extensive efforts have been devoted to the analysis of piezoelectric materials in recent years, most researches have been conducted by assuming that the material properties are fixed and have no uncertainties. Intrinsically, material properties have a certain amount of scatter and such uncertainties can affect the performance of component. In this paper, the convex modeling is used to consider such uncertainties in calculating the crack extension force of piezoelectric material and the results are compared with the one obtained via the Monte Carlo simulation. Numerical results show that crack extension forces increase when uncertainties considered, which indicates that such uncertainties should not be ignored for reliable lifetime prediction. Also, the results obtained by the convex modeling and the Monte Carlo simulation show good agreement, which demonstrates the effectiveness of the convex modeling.

Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

Modeling for Vibration Characteristics of Viscoelastic Material (점탄성 재료의 제진특성 모델링)

  • 이택희;박상규;김중배;이상조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1146-1149
    • /
    • 2001
  • In this study, modeling methods for viscoelastic material are reviewed to investigate the vibration characteristics. Frequency response functions are obtained by employing experimental modal analysis and compared with the modeling results from a commercial software NASTRAN. Properties of equivalent model of the beam with damping material are also calculated by using the RKU equation.

  • PDF

Identification of Unknown Remanent Magnetization in the Ferromagnetic Ship Hull Utilizing Material Sensitivity Information Combined with Magnetization Modeling

  • Kim, Nam-Kyung;Jeung, Gi-Woo;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2011
  • This paper presents a magnetization modeling method combined with material sensitivity information to identify the unknown magnetization distribution of a hull and improve the accuracy of the predicted fields. First, based on the magnetization modeling, the hull surface was divided into three-dimensional sheet elements, where the individual remanent magnetization was assumed to be constant. For a fast search of the optimum magnetization distribution on the hull, a material sensitivity formula containing the first-order gradient information of an objective function was combined with the magnetization modeling method. The feature of the proposed method is that it can provide a stable and accurate field solution, even in the vicinity of the hull. Finally, the validity of the method was tested using a scale model ship.

Analytical modeling enables explanation of paradoxical behaviors of electronic and optical materials and assemblies

  • Suhir, Ephraim
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.185-220
    • /
    • 2017
  • Merits, attributes and challenges associated with the application of analytical modeling in electronics and photonics materials science are addressed, based mostly on the author's research during his tenure with Bell Labs, University-of-California, Portland State University, and small business innovative research (SBIR) ERS Co., USA. The emphasis is on practically important, yet often paradoxical, i.e., intuitively non-obvious, material behaviors. It is concluded that when material reliability is crucial, ability to effectively quantify it is imperative, and that analytical modeling is the most suitable, although never straightforward, technique to understand, explain and quantify material behaviors, especially in extreme, extraordinary and paradoxical situations.

A study on the integrated data modeling for the plant design management system and the plant design system using relational database (관계형 데이터베이스를 이용한 PDMS/PDS의 통합 데이터 모델링에 관한 연구)

  • 양영태;김재균
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.200-211
    • /
    • 1997
  • Most recently, offshore Engineering & Construction field is concerned about integration management technology such as CIM(Computer Integrated Manufacturing), PDM(Product Data Management) and Enterprise Information Engineering in order to cope with the rapid change of engineering and manufacturer specification as per owner's requirement during construction stage of the project. System integration and integrated data modeling with relational database in integration management technology improve the quality of product and reduce the period of the construction project by reason of owing design information jointly. This paper represents the design methodology of system integration using Business Process Reengineering by the case study. The case study is about the offshore plant material information process from front end engineering design to detail engineering for the construction and the basis of monitoring system by integrating and sharing the design information between the 2D intelligent P&ID and 3D plant modeling using relational database. As a result of the integrated data modeling and system integration, it is possible to maintain the consistency of design process in point of view of the material balancing and reduce the design assumption/duration. Near future, this system will be expanded and connected with the MRP(Material Requirement Planing) and the POR (Purchase Order Requisition) system.

  • PDF

Geometric Implicit Function Modeling and Analysis Using R-functions (R-function을 이용한 형상의 음함수 모델링 및 해석)

  • Shin, Heon-Ju;Sheen, Dong-Woo;Kim, Tae-Wan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.220-232
    • /
    • 2007
  • Current geometric modeling and analysis are commonly based on B-Rep modeling and a finite elements method respectively. Furthermore, it is difficult to represent an object whose material property is heterogeneous using the B-Rep method because the B-Rep is basically used for homogeneous models. In addition, meshes are required to analyze a property of a model when the finite elements method is applied. However, the process of generating meshes from B-Rep is cumbersome and sometimes difficult especially when the model is deformed as time goes by because the topology of deforming meshes are changed. To overcome those problems in modeling and analysis including homogeneous and heterogeneous materials, we suggest a unified modeling and analysis method based on implicit representation of the model using R-function which is suggested by Rvachev. For implicit modeling of an object a distance field is approximated and blended for a complex object. Using the implicit function mesh-free analysis is possible where meshes are not necessary. Generally mesh-free analysis requires heavy computational cost compared to a finite elements method. To improve the computing time of function evaluation, we utilize GPU programming. Finally, we give an example of a simple pipe design problem and show modeling and analysis process using our unified modeling and analysis method.