• Title/Summary/Keyword: Matlis domain

Search Result 2, Processing Time 0.022 seconds

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

PULLBACKS OF 𝓒-HEREDITARY DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1093-1101
    • /
    • 2018
  • Let (RDTF, M) be a Milnor square. In this paper, it is proved that R is a ${\mathcal{C}}$-hereditary domain if and only if both D and T are ${\mathcal{C}}$-hereditary domains; R is an almost perfect domain if and only if D is a field and T is an almost perfect domain; R is a Matlis domain if and only if T is a Matlis domain. Furthermore, to give a negative answer to Lee, s question, we construct a counter example which is a C-hereditary domain R with $w.gl.dim(R)={\infty}$.