• Title/Summary/Keyword: Matrix metallopeptidase 1

Search Result 18, Processing Time 0.07 seconds

Anti-aging Effect of Cycloheterophyllin in UVA-irradiated Dermal Fibroblasts (자외선 조사에 의해 노화된 섬유아세포에서 Cycloheterophyllin의 항노화 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.285-290
    • /
    • 2019
  • This study was carried out to identify the skin anti-aging effect of cycloheterophyllin on dermal fibroblasts. To elucidate anti-aging effects of cycloheterophyllin on dermal fibroblasts, I measured cell viability, mRNA expressions, and Collagen, type I/matrix metallopeptidase 1(MMP1)-ELISA assay. In this study, I investigated the effects of cycloheterophyllin on Collagen, type I, alpha 1(COL1A1)/Collagen, type III, alpha 1(COL3A1)/MMP1/Superoxide dismutases/Catalase(CAT) mRNA expressions and Collagen, type I/MMP1 protein production. Quantitative Real-time RT-PCR showed that cycloheterophyllin increased mRNA level of COL1A1/COL3A1/CAT genes and collagen, type I protein by ELISA assay compared to UVA-treated dermal fibroblasts. Furthermore MMP1 mRNA and protein expressions were decreased by cycloheterophyllin treatment. These observations revealed that cycloheterophyllin increased anti-aging effects in dermal fibroblasts. Therefore, I identified the anti-aging effects of cycloheterophyllin, and these results showed that the cycloheterophyllin can be a considerable potent ingredient for skin anti-aging. Based on this, I anticipated further researches about cycloheterophyllin for mechanism to develop not only cosmetics but for healthcare food or medicine.

The Expression of MRTF-A and AQP1 Play Important Roles in the Pathological Vascular Remodeling

  • Jiang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1375-1383
    • /
    • 2015
  • Background: Objective Myocardin-related transcription factor (MRTF)-A is a Rho signaling-responsive co-activator of serum response factor (SRF). The purpose of this study is to investigate the role of MRTF-A and AQP1 (aquaporin 1) in pathological vascular remodeling. Materials and Methods: MRTF-A, AQP1 and neointima expression was detected both in the wire injured femoral arteries of wild-type mice and the atherosclerotic aortic tissues of $ApoE^{-/-}$ mice. Expression of ICAM-1, matrix metallopeptidase 9 (MMP-9) and integrin ${\beta}1$ were also assayed. The intercourse relationship between the molecules were investigated by interfering RNA and inhibitor assay. Results: MRTF-A and AQP1 expression were significantly higher in the wire injured femoral arteries of wild-type mice and in the atherosclerotic aortic tissues of $ApoE^{-/-}$ mice than in healthy control tissues. Both in wire-injured femoral arteries in MRTF-A knockout ($Mkl1^{-/-}$) mice and atherosclerotic lesions in $Mkl1^{-/-}$; $ApoE^{-/-}$ mice, neointima formation were significantly attenuated and the expression of AQP1 were significantly decreased. Expression of ICAM-1, matrix metallopeptidase 9 (MMP-9) and integrin ${\beta}1$, three SRF targets and key regulators of cell migration, and AQP1 in injured arteries was significantly weaker in $Mkl1^{-/-}$ mice than in wild-type mice. In cultured vascular smooth muscle cells (VSMCs), knocking down MRTF-A reduced expression of these genes and significantly impaired cell migration. Underlying the increased MRTF-A expression in dedifferentiated VSMCs were the down-regulation of microRNA-300. Moreover, the MRTF-A inhibitor CCG1423 significantly reduced neointima formation following wire injury in mice. Conclusions: MRTF-A could be a novel therapeutic target for the treatment of vascular diseases.

Solanum nigrum L. Extract Inhibits Inflammation in Lipopolysaccharide-stimulated Raw 264.7 and BV2 Cells

  • Lee, Jin Wook;Jung, Hyuk-Sang;Sohn, Youngjoo;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.92-92
    • /
    • 2018
  • Solanum nigrum L. (SNL), generally known as black nightshade, is traditionally used as medicine to reduce inflammation caused by several diseases like asthma, chronic bronchitis and liver cirrhosis. In this study, anti-inflammatory effects of SNL extract were examined and possible molecular mechanisms of the anti-inflammatory effects were investigated. The inhibitory effects of SNL extract on nitric oxide (NO), pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6) and Matrix metallopeptidase 9 (MMP-9) productions were dissected using lipopolysaccharide (LPS) stimulated murine macrophage-like cell line Raw264.7 cells and human microglial cell line BV2 cells. We further investigated whether SNL extract could suppress the phosphorylation of ERK1/2, JNK, and p38 and the nuclear expression of nuclear factor $NF-{\kappa}B$ p65 in LPS-stimulated Raw264.7 cells and BV2 cells. As a result, we showed that the SNL extract significantly decreased the production of pro-inflammatory cytokines, NO, and MMP-9. In addition, the SNL strongly inhibited the phosphorylation of ERK1/2, JNK, p38 and nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. We confirmed that the extracts of SNL effectively inhibits the anti-inflammatory and may be used as a therapeutic to various inflammatory diseases.

  • PDF

The Suppressive Effect of Pueraria lobata Root Extract and Its Biotransformed Preparation against Skin Wrinkle Formation

  • Koo, Hyun Jung;Lee, SungRyul;Kang, Se Chan;Kwon, Jung Eun;Lee, Da Eun;Choung, Eui-Su;Lee, Jong-Sub;Lee, Jin Woo;Park, Yuna;Sim, Dong Soo;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.30 no.3
    • /
    • pp.272-279
    • /
    • 2017
  • EP was obtained through 20% ethanol extraction of Pueraria lobata root, and the fermented form of EP, FEP, was prepared from the EP after incubating with Lactobacillus rhamnosus vitaP1. There was no significant toxicity by EP and FEP up to $1000{\mu}g/ml$ in NIH-3T3, HaCaT, and B16F10 cells. In addition to antioxidant potentials of EP and FEP determined by DPPH and ABST assays, we confirmed increase of procollagen type I and elastin synthesis by supplementation of the EP and FEP at the concentration of $50{\mu}g/ml$ using ELISA kits. The protein expression levels of matrix metalloprotease (MMP)-1, -3, and -9, those are involved in the degradation of collagen or other skin matrix proteins, were remarkably suppressed while their inhibitory protein metallopeptidase inhibitor 1 (TIMP-1) was greatly up-regulated by supplementation of the EP and FEP at a concentration of $50{\mu}g/ml$. Taken together, both EP and FEP supplementation could be involved in the suppression of the skin wrinkle formation through inhibiting degradation of collagen and stimulating the synthesis of collagen and elastin. The results showed that the anti-wrinkle potential of the EP and FEP will be a promising candidate for developing cosmeceutical compounds or products.

Metformin Inhibits Isoproterenol-induced Cardiac Hypertrophy in Mice

  • Cha, Hye-Na;Choi, Jung-Hyun;Kim, Yong-Woon;Kim, Jong-Yeon;Ahn, Myun-Whan;Park, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.377-384
    • /
    • 2010
  • The present study examined whether metformin treatment prevents isoporterenol-induced cardiac hypertrophy in mice. Chronic subcutaneous infusion of isoproterenol (15 mg/kg/24 h) for 1 week using an osmotic minipump induced cardiac hypertrophy measured by the heart-to-body weight ratio and left ventricular posterior wall thickness. Cardiac hypertrophy was accompanied with increased interleukin-6 (IL-6), transforming growth factor (TGF)-${\beta}$, atrial natriuretic peptide (ANP), collagen I and III, and matrix metallopeptidase 2 (MMP-2). Coinfusion of metformin (150 mg/kg/24 h) with isoproterenol partially inhibited cardiac hypertrophy that was followed by reduced IL-6, TGF-${\beta}$, ANP, collagen I and III, and MMP-2. Chronic subcutaneous infusion of metformin did not increase AMP-activated protein kinase (AMPK) activity in heart, although acute intraperitoneal injection of metformin (10 mg/kg) increased AMPK activity. Isoproterenol increased nitrotyrosine levels and mRNA expression of antioxidant enzyme glutathione peroxidase and metformin treatment normalized these changes. These results suggest that metformin inhibits cardiac hypertrophy through attenuating oxidative stress.

The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum

  • Lee, Kang Pa;Choi, Nan Hee;Kim, Jin Teak;Park, In-Sik
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.256-261
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine serum (FBS). MATERIALS/METHODS: Cell growth and proliferation were determined by evaluating cell viability using an EZ-Cytox Cell Viability Assay Kit. FBS-induced migration of C6 glioma cells was evaluated by performing the scratch wound healing assay and the Boyden chamber assay. We also used western blot analysis to determine the expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), a major regulator of migration and proliferation of glioma cells. Matrix metallopeptidase (MMP) 9 and TIMP-1 levels were measured by performing reverse transcription PCR. RESULTS: Yacon ($300{\mu}g/mL$) reduced both the FBS-induced proliferation of C6 glioma cells and the dose-dependent migration of the FBS-stimulated C6 cells. FBS-stimulated C6 glioma cells treated with yacon (200 and $300{\mu}g/mL$) showed reduced phosphorylation of ERK1/2 and inhibition of MMP 9 expression compared to those shown by the untreated FBS-stimulated C6 cells. In contrast, yacon (200 and $300{\mu}g/mL$) induced TIMP-1 expression. CONCLUSIONS: On the basis of these results, we suggest that yacon may exert an anti-cancer effect on FBS-stimulated C6 glioma cells by inhibiting their proliferation and migration. The most likely mechanism for this is down-regulation of ERK1/2 and MMP9 and up-regulation of TIMP-1 expression levels.

Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis

  • Rui Chen;Mengting Wang;Qiaoling Qi;Yanli Tang;Zhenzhao Guo;Shuai Wu;Qiyan Li
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.20-37
    • /
    • 2023
  • Purpose: Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. Methods: The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. Results: Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant antiinflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. Conclusions: DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.

15-Hydroxyeicosatetraenoic Acid Inhibits Phorbol-12-Myristate-13-Acetate-Induced MUC5AC Expression in NCI-H292 Respiratory Epithelial Cells

  • Song, Yong-Seok;Kim, Man Sub;Lee, Dong Hun;Oh, Doek-Kun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.589-597
    • /
    • 2015
  • It has been reported that overexpression of MUC5AC induced by excessive inflammation leads to airway obstruction in respiratory diseases such as chronic obstructive pulmonary disease and asthma. 15-Hydroxyeicosatetraenoic acid (15-HETE) has been reported to have anti-inflammatory effects, but the role of 15-HETE in respiratory inflammation has not been determined. Therefore, the aim of this study was to investigate the effects of 15-HETE on MUC5AC expression and related pathways. In this study, phorbol-12-myristate-13-acetate (PMA) was used to stimulate NCI-H292 bronchial epithelial cells in order to examine the effects of 15-HETE. 15-HETE inhibited PMA-induced expression of MUC5AC mRNA and secretion of MUC5AC protein. Moreover, 15-HETE regulated matrix metallopeptidase 9 (MMP-9), mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK). In addition, 15-HETE decreased the nuclear translocation of specificity protein-1 (Sp-1) transcription factor and nuclear factor κB (NF-κB). Furthermore, 15-HETE enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) as a PPARγ agonist. This activity reduced the phosphorylation of protein kinase B (PΚB/Akt) by increasing the expression of phosphatase and tensin homolog (PTEN). In conclusion, 15-HETE regulated MUC5AC expression via modulating MMP-9, MEK/ERK/Sp-1, and PPARγ/PTEN/Akt signaling pathways in PMA-treated respiratory epithelial cells.

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β

  • Li, Xianghui;Zhen, Zhilei;Tang, Guodong;Zheng, Chong;Yang, Guofu
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-$1{\beta}$. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-$1{\beta}$ on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-$1{\beta}$ treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-$1{\beta}$, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs' collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.