• Title/Summary/Keyword: Mean Loading Effect

Search Result 141, Processing Time 0.026 seconds

MEAN LOAD EFFECT ON FATIGUE OF WELDED JOINTS USING STRUCTURAL STRESS AND FRACTURE MECHANICS APPROACH

  • Kim, Jong-Sung;Kim, Cheol;Jin, Tae-Eun;Dong, P.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.277-284
    • /
    • 2006
  • In order to ensure the structural integrity of nuclear welded structures during design life, the fatigue life has to be evaluated by fatigue analysis procedures presented in technical codes such as ASME B&PV Code Section III. However, existing fatigue analysis procedures do not explicitly consider the presence of welded joints. A new fatigue analysis procedure based on a structural stress/fracture mechanics approach has been recently developed in order to reduce conservatism by erasing uncertainty in the analysis procedure. A recent review of fatigue crack growth data under various mean loading conditions using the structural stress/fracture mechanics approach, does not consider the mean loading effect, revealed some significant discrepancies in fatigue crack growth curves according to the mean loading conditions. In this paper, we propose the use of the stress intensity factor range ${\Delta}K$ characterized with loading ratio R effects in terms of the structural stress. We demonstrate the effectiveness in characterizing fatigue crack growth and S-N behavior using the well-known data. It was identified that the S-N data under high mean loading could be consolidated in a master S-N curve for welded joints.

Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading (이축하중을 받는 S45C강의 피로균열의 발생과 성장거동)

  • Park, S.H.;Lee, S.H.;Kim, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading (이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동)

  • KIM SANG-TAE;PARK SUN-HONG;KWUN SOOK-IN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

Effect of loading direction on the low cycle fatigue behavior of rolled AZ31 Mg alloy (AZ31 Mg 합금 압연 판재에서 하중방향에 따른 저주기 피로특성)

  • Park, S.H.;Hong, S.G.;Lee, B.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.77-80
    • /
    • 2008
  • Low-cycle fatigue (LCF) tests were carried out to investigate the effect of loading direction on the cyclic deformation behavior and fatigue resistance of rolled AZ31 magnesium alloy. The as-received alloy showed a strong basal texture indicating that the most of basal planes of hexagonal close-packed structure were located parallel to the rolling direction. Two types of specimens whose loading directions were oriented parallel (RD) and vertical (ND) to the rolling direction. respectively, were used for the comparison. It was found that RD specimens yielded at much lower stresses during compression, while vice versa for the ND specimens, which was mainly attributed to the formation of primary twins. This anisotropic deformation behavior resulted in the different mean stresses during the cycling of RD and ND specimens, affecting the fatigue resistance of two specimens. The ND specimen showed a superior fatigue resistance as compared to the RD specimen under strain-controlled condition.

  • PDF

Functional Relationships between Fatigue Data

  • Beiss, Paul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.140-141
    • /
    • 2006
  • Most PM components are exposed to cyclic loading over long periods of time, yet, the fatigue performance is often at best characterized by a fully reversed bending strength. The effects of density, deviating loading modes, external notches or mean stresses must usually be estimated. The amount of available data is nowadays sufficient to come to fact-based estimates.

  • PDF

Effect of loading time on marginal bone loss around hydroxyapatite-coated implants

  • Kim, Young-Kyun;Ahn, Kyo-Jin;Yun, Pil-Young;Kim, Minkyoung;Yang, Hong-So;Yi, Yang-Jin;Bae, Ji-Hyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.4
    • /
    • pp.161-167
    • /
    • 2013
  • Objectives: The objective of this study is compare the rate of marginal bone resorption around hydroxyapatite-coated implants given different loading times in order to evaluate their stability. Materials and Methods: The study was conducted retrospectively for one year, targeting 41 patients whose treatment areas were the posterior maxilla and the mandible. Osstem TS III HA (Osstem Implant Co., Busan, Korea) and Zimmer TSV-HA (Zimmer Dental, Carlsbad, CA, USA), which employ the new hydroxyapatite coating technique, were used. The patients were divided into two groups - immediate and delayed loading - and the bone level at the time of loading commencement and after one year of loading was measured using periapical radiography. Differences between the groups were evaluated using Mann-Whitney (${\alpha}$=0.05). Results: For all patients as a single group, the survival rate of the implants was 100%, and the mean marginal bone loss was $0.26{\pm}0.59mm$. In comparison of the differences by loading, mean marginal bone loss of $0.32{\pm}0.69mm$ was recorded for the immediate loading group whereas the delayed loading group had mean marginal bone loss of $0.16{\pm}0.42mm$. However, the difference was not significant (P>0.05). Conclusion: Within the limited observation period of one year, predictable survival rates can be expected when using immediately loaded hydroxyapatite-coated implants.

An Experimental Study on Fatigue Life Evaluation of Welded Joints under Storm Loading (스톰 하중을 받는 용접 구조물의 피로 수명 평가에 대한 실험 연구)

  • Yoo, Chang-Hyuk;Kim, Kyung-Su;Suh, Yong-Suk;Shim, Yong-Lae;Ha, Yeong-Su;You, Won-Hyo;Choi, Hyun-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, fatigue tests are conducted for the specimens with longitudinal and transverse attachment under variable amplitude axial loading based on storm model. Considered loadings include repeated single storm, 6 or 8 storms randomly, and storms including calm sea condition while the mean stress and the maximum stress of loadings are changed. The effect of three variables are investigated; root mean square(RMS) value of stress amplitude, mean stress shift and maximum stress, which can characterize storm loading on fatigue life. In addition, experiments including calm sea loading are also carried out to investigate the effect of calm sea state. Test results are evaluated and compared with DNV-CN2005 and Matsuoka's method for the estimation of crack initiation and propagation life. To verify the validity of the criteria, the measured crack initiation lifes are compared with the specific crack length 15mm, which are calculated with beach marks.

Biaxial flexural strength and phase transformation of Ce-TZP/$Al_2O_3$ and Y-TZP core materials after thermocycling and mechanical loading

  • Gungor, Merve Bankoglu;Yilmaz, Handan;Aydin, Cemal;Nemli, Secil Karakoca;Bal, Bilge Turhan;Tiras, Tulay
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.224-232
    • /
    • 2014
  • PURPOSE. The purpose of the present study was to evaluate the effect of thermocycling and mechanical loading on the biaxial flexural strength and the phase transformation of one Ce-TZP/$Al_2O_3$ and two Y-TZP core materials. MATERIALS AND METHODS. Thirty disc-shaped specimens were obtained from each material. The specimens were randomly divided into three groups (control, thermocycled, and mechanically loaded). Thermocycling was subjected in distilled water for 10000 cycles. Mechanical loading was subjected with 200 N loads at a frequency of 2 Hz for 100000 times. The mean biaxial flexural strength and phase transformation of the specimens were tested. The Weibull modulus, characteristic strength, 10%, 5% and 1% probabilities of failure were calculated using the biaxial flexural strength data. RESULTS. The characteristic strengths of Ce-TZP/$Al_2O_3$ specimens were significantly higher in all groups compared with the other tested materials (P<.001). Statistical results of X-ray diffraction showed that thermocycling and mechanical loading did not affect the monoclinic phase content of the materials. According to Raman spectroscopy results, at the same point and the same material, mechanical loading significantly affected the phase fraction of all materials (P<.05). CONCLUSION. It was concluded that thermocycling and mechanical loading did not show negative effect on the mean biaxial strength of the tested materials.

Pulverized Coal Particle Presence Inside CWM Droplet (CWM 방울안의 미분탄 존재)

  • 김종호;김성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1211-1221
    • /
    • 1990
  • The purpose of this study is to get experimental data on the distribution of CWM (Coal- Water Mixture) droplets size and the presence of pulverized coal particles inside CWM droplets. Atomization of CWM is done by Twin-Fluid Atomizer. The operational parameters are atomizing air pressure, coal particle loading, mean size of pulverized coal particles and sampling positions across spray. Th data analysis is initiated by Impression Sampling Method(Magnesium Oxide Technique) and Photo-technique and counting works are followed. Experimental work induces following research results. The variation of particle loadings in slurry makes no appreciable effects on the mean size of CWM droplets. It is evident that atomizing air pressure has very strong effect on the atomization of slurry. The mean size of atomized fuel droplets is dramatically reduced with the increasing air pressure. The population ratio of droplets without coal particles to total number of droplets is decreased as atomizing air pressure or loading rises and the same trend is obtained as the mean size of coal particles becomes smaller but a certain tendency of coal particle presence inside droplets could not be found from the change of sampling positions.

Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N

  • Chen, Xiaohui;Chen, Xu;Chen, Haofeng
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • Uniaxial ratcheting behavior of Z2CND18.12N austenitic stainless steel used nuclear power plant piping material was studied. The results indicated that ratcheting strain increased with increasing of stress amplitude under the same mean stress and different stress amplitude, ratcheting strain increased with increasing of mean stress under the same stress amplitude and different mean stress. Based on least square method, a suitable method to arrest ratcheting by loading the materials was proposed, namely determined method of zero ratcheting strain rate. Zero ratcheting strain rate occur under specified mean stress and stress amplitudes. Moreover, three dimensional ratcheting boundary surface graph was established with stress amplitude, mean stress and ratcheting strain rate. This represents a graphical surface zone to study the ratcheting strain rates for various mean stress and stress amplitude combinations. The graph showed the ratcheting behavior under various combinations of mean and amplitude stresses. The graph was also expressed with the help of experimental results of certain sets of mean and stress amplitude conditions. Further, experimentation cost and time can be saved.