• Title/Summary/Keyword: Median lethal concentration

Search Result 56, Processing Time 0.034 seconds

Effect of Adjuvants on Antibody Titer of Synthetic Recombinant Light Chain of Botulinum Neurotoxin Type B and its Diagnostic Potential for Botulism

  • Jain, Swati;Ponmariappan, S.;Kumar, Om;Singh, Lokendra
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.719-727
    • /
    • 2011
  • Botulism is a neuroparalytic disease caused by Clostridium botulinum, which produces seven (A-G) antigenically diverse neurotoxins (BoNTs). BoNTs are the most poisonous substances known to humans, with a median lethal dose ($LD_{50}$) of approximately 1 ng/kg of body weight. Owing to their extreme potency and lethality, they have the potential to be used as a bioterrorism agent. The mouse bioassay is the gold standard for the detection of botulinum neurotoxins; however, it requires at least 3-4 days for completion. Attempts have been made to develop an ELISA-based detection system, which is potentially an easier and more rapid method of botulinum neurotoxin detection. The present study was designed using a synthetic gene approach. The synthetic gene encoding the catalytic domain of BoNT serotype B from amino acids 1-450 was constructed with PCR overlapping primers (BoNT/B LC), cloned in a pQE30 UA vector, and expressed in an E. coli M15 host system. Recombinant protein production was optimized at 0.5 mM IPTG final concentration, 4 h post induction, resulting in a maximum yield of recombinant proteins. The immunogenic nature of the recombinant BoNT/B LC protein was evaluated by ELISA. Antibodies were raised in BALB/c mice using various adjuvants. A significant rise in antibody titer (p<0.05) was observed in the Alum group, followed by the Titermax Classic group, Freund's adjuvant, and the Titermax Gold group. These developed high-titer antibodies may prove useful for the detection of botulinum neurotoxins in food and clinical samples.

In vitro anti-Trypanosoma cruzi activity of methanolic extract of Bidens pilosa and identification of active compounds by gas chromatography-mass spectrometry analysis

  • Gabriel Enrique Cazares-Jaramillo;Zinnia Judith Molina-Garza;Itza Eloisa Luna-Cruz;Luisa Yolanda Solis-Soto;Jose Luis Rosales-Encina;Lucio Galaviz-Silva
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.405-417
    • /
    • 2023
  • Chagas disease, caused by Trypanosoma cruzi parasite, is a significant but neglected tropical public health issue in Latin America due to the diversity of its genotypes and pathogenic profiles. This complexity is compounded by the adverse effects of current treatments, underscoring the need for new therapeutic options that employ medicinal plant extracts without negative side effects. Our research aimed to evaluate the trypanocidal activity of Bidens pilosa fractions against epimastigote and trypomastigote stages of T. cruzi, specifically targeting the Brener and Nuevo León strains-the latter isolated from Triatoma gerstaeckeri in General Terán, Nuevo León, México. We processed the plant's aerial parts (stems, leaves, and flowers) to obtain a methanolic extract (Bp-mOH) and fractions with varying solvent polarities. These preparations inhibited more than 90% of growth at concentrations as low as 800 ㎍/ml for both parasite stages. The median lethal concentration (LC50) values for the Bp-mOH extract and its fractions were below 500 ㎍/ml. Tests for cytotoxicity using Artemia salina and Vero cells and hemolytic activity assays for the extract and its fractions yielded negative results. The methanol fraction (BPFC3MOH1) exhibited superior inhibitory activity. Its functional groups, identified as phenols, enols, alkaloids, carbohydrates, and proteins, include compounds such as 2-hydroxy-3-methylbenzaldehyde (50.9%), pentadecyl prop-2-enoate (22.1%), and linalool (15.4%). Eight compounds were identified, with a match confirmed by the National Institute of Standards and Technology (NIST-MS) software through mass spectrometry analysis.

Acute and Chronic Toxicity of Phenol to Mysid, Archaeomysis kokuboi (곤쟁이, Archaeomysis kokuboi에 미치는 phenol의 급성 및 만성독성)

  • KIM Jeong-Seon;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.87-97
    • /
    • 1995
  • Acute and chronic toxicity of phenol on the mortality, long-term survival and respiration rates of the mysid, Archaeomysis kokuboi adult and juvenile were examined. This experiment was condurted by static bioassay procedure with the different salinity at $25^{\circ}C$ In lethal test, the test animals were exposed to 6 different phenol concentrations to determine $LC_{50}$ and I$LT_{50}$ (median lethal concentration and time) values. The $LC_{50}$ values with the exposure time for the mysid adult ranged from 31.31ppm to 1.49ppm phenol and for the mysid juvenile ranged from 6.90ppm to 0.26ppm in all experimental groups. Mortality was increased with the decrease of salinity, The $96hr-LC_{50}$ values at 16, 24 and $32\%o$ salinity for the mysid adult were 1.49, 2.71 and 4.53ppm phenol, white the values for the mysid juvenile were 0.26, 0.56 and 0.71ppm, respectively. The ratios of $96hr-LC_{50}$ values for the mysid adult to those for the mysid juvenile at 16, 24 and $32\%p$ salinity were 5.73, 4.84 and 6.38, respectively. The mysid juveniles were more sensitive to phenol than the mysid adults. Compared $LT_{50}$ values for the mysid adult with those for the mysid juvenile, the $LT_{50}$ values for the mysid adult ranged from 384.7 to 29.0 hours at 1.7-127ppm phenol concentrations and for the mysid juvenile ranged from 132.2 to 18.7 hours at 0.5~6.Oppm phenol concentrations. The lowest $LT_{50}$ values for the mysid adult and juvenile were showed at the combination of the highest experimental concentration of phenol and the lowest experimental salinity. The mysid juveniles showed lower $LT_{50}$ values than those of adults. The chronic effects of phenol on the mysid at the sublethal effective concentration of phenol were lower in the $32\%o$ salinitr group than 16 or $24\%o$ salinity groups. Oxygen consumption rates of the mysid adult were decreased with the increase of phenol concentration and exposure time, and decreased significantly in lower salinity at the same concentration or phenol.

  • PDF

Application of tylosin antibiotics to olive flounder (Paralichthys olivaceus) infected with Streptococcus parauberis

  • Joo, Min-Soo;Hwang, Seong Don;Choi, Kwang-Min;Kim, Yoon-Jae;Hwang, Jee Youn;Kwon, Mun-Gyeong;Jeong, Ji-Min;Seo, Jung Soo;Lee, Ji Hoon;Lee, Hee-Chung;Park, Chan-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.8
    • /
    • pp.20.1-20.18
    • /
    • 2020
  • Background: Olive flounder, Paralichthys olivaceus, is an economically important aquaculture species in Korea. Olive flounders have been heavily damaged by streptococcal infections every year and are treated with antibiotics. However, antibiotic abuse is causing the emergence of resistant strains, and to overcome this, research has shown that new antibiotics must be applied. Tylosin is a relatively safe antibiotic and has good activity against Gram-positive bacteria and mycoplasma. We studied the therapeutic effects and side effects of tylosin on Streptococcus parauberis-infected olive flounder. Methods: After artificial infection of olive flounder with S. parauberis SPOF18J3, an appropriate dose of tylosin was confirmed by intramuscular injection (I.M.) at 2.5, 5, 10, and 15 mg/kg, and oral administration at 10 and 20 mg/kg. After I.M. and oral administration dosing of tylosin, side effects were confirmed by serological analysis, histopathological analysis, and median lethal dose (LD50) analysis at both an appropriate concentration and a high concentration. Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey's test (p < 0.05). Results: The appropriate I.M. and oral administration concentration of tylosin administered to olive flounder infected with S. parauberis SPOF18J3 was found to be 10 mg/kg. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were showed not significantly different between the control group and the experimental groups. The histopathologic results showed mild inflammatory responses in muscle and tubular vacuolization and tubular atrophy appeared, but there were no significant differences between the groups. The LD50 was confirmed to be 461 mg/kg. Conclusion: In this study, an effective treatment method was provided by verifying the treatment effects and side effects of tylosin in olive flounder infected with S. parauberis, which can be applied directly to aquaculture sites. In addition, these results may be used as a reference for evaluation required upon request to obtain approval for tylosin antibiotics as fishery antibiotics in Korea. After approval, it is possible that a fishery disease manager will be able to prescribe and sell the antibiotic tylosin.

Effects of Transition Metal Gallium on the Serum Biochemistry and Erythrocyte Morphology of Goldfish (Carassius auratus) (전이금속 갈륨이 금붕어(Carassius auratus)의 적혈구 및 혈청의 생화학반응에 미치는 영향)

  • Kim, Dong-Hwi;Dharaneedharan, Subramanian;Jang, Young-Hwan;Park, So-Hyun;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1308-1312
    • /
    • 2016
  • Heavy metals such as gallium (Ga) cause serious physiological damage to exposed organisms, mostly of aquatic species. Ga one of the inter-metallic, transition elements increasingly being used in making high-speed semiconductors, such as Ga arsenide. The purposes of this study were to investigate the effects of Ga on acute toxicity, serum biochemical changes, and erythrocyte morphological changes in the blood stream of goldfish (Carassius auratus). Median lethal concentrations were determined in acute tests. The 96 hr $LC_{50}$ value was 9.15 mg/ml. Goldfish were exposed to different Ga concentrations (2.0, 4.0, and 8.0 mg/ml) for 30 days to assess its toxic effects. The results indicate that the measured serum biochemistry parameters (including glucose, blood urea nitrogen, creatinine, cholesterol, and triglyceride) of the Ga-exposed fish groups differed significantly from the untreated fish group. In addition, a change in the erythrocytes' morphology at a high concentration (8.0 mg/ml) of Ga exposure shows respiratory problems. Our results suggest that 2.0 mg/ml is proposed as a biologically safe concentration that can be used for establishing tentative water quality criteria concerning the same-size goldfish.

Acute Toxicity of Ammonia on Juvenile banded Catfish(Pseudobagurus fulvidraco) (동자개 치어의 암모니아 급성 독성)

  • SOHN, Sang-Gyu;LEE, Joo-Yong;LEE, Young-Sik;KIM, Kwang-Seog;KIM, Bong-Rae;LEE, Jeong-Ho;CHOI, Hye-Sung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1229-1235
    • /
    • 2015
  • Juvenile banded catfish(Pseudobagurus fulvidraco, mean length $10.7{\pm}0.42cm$ and mean weight $15.0{\pm}0.23g$) were exposed to varies TAN(total ammonia) concentrations at pH levels of $6.12{\pm}0.51$, $7.00{\pm}0.26$ and $8.04{\pm}0.07$ for 96hrs to check the level of acute toxicity on biofloc technology aquaculture system(BFT). The result showed that cumulative mortalities for juvenile banded catfish at TAN levels 48.95, 55.96, 66.47, and 78.88 mg/L at pH $6.12{\pm}0.51$ were 0, 30, 30, and 50%, respectively. At pH $7.00{\pm}0.26$, its mortalities to TAN 5.20, 11.68, 15.31, and 18.31 mg/L were 0, 10, 20, and 70%, respectively and at pH $8.04{\pm}0.07$, the mortalities to TAN 0.96, 1.49, 2.13, and 3.62 mg/L were 10, 20, 40, and 100%, respectively. Its $96h-LC_{50}$ (median lethal concentration, $LC_{50}$) at pH $6.12{\pm}0.51$, $7.00{\pm}0.26$, and $8.04{\pm}0.07$ were 78.12, 15.87, and 2.21 mg/L for TAN, and 0.05, 0.10, and 0.14 mg/L for $NH_3$, respectively, and the acute toxicity for ammonia to juvenile banded catfish increased exponentially with increase of pH.

Prediction and analysis of acute fish toxicity of pesticides to the rainbow trout using 2D-QSAR (2D-QSAR방법을 이용한 농약류의 무지개 송어 급성 어독성 분석 및 예측)

  • Song, In-Sik;Cha, Ji-Young;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.544-555
    • /
    • 2011
  • The acute toxicity in the rainbow trout (Oncorhynchus mykiss) was analyzed and predicted using quantitative structure-activity relationships (QSAR). The aquatic toxicity, 96h $LC_{50}$ (median lethal concentration) of 275 organic pesticides, was obtained from EU-funded project DEMETRA. Prediction models were derived from 558 2D molecular descriptors, calculated in PreADMET. The linear (multiple linear regression) and nonlinear (support vector machine and artificial neural network) learning methods were optimized by taking into account the statistical parameters between the experimental and predicted p$LC_{50}$. After preprocessing, population based forward selection were used to select the best subsets of descriptors in the learning methods including 5-fold cross-validation procedure. The support vector machine model was used as the best model ($R^2_{CV}$=0.677, RMSECV=0.887, MSECV=0.674) and also correctly classified 87% for the training set according to EU regulation criteria. The MLR model could describe the structural characteristics of toxic chemicals and interaction with lipid membrane of fish. All the developed models were validated by 5 fold cross-validation and Y-scrambling test.

Acute Toxicity of Nitrite on Juvenile Banded Catfish(Pseudobagurus fulvidraco) (동자개 치어의 아질산 급성 독성)

  • Sohn, Sang-Gyu;Lee, Young-Sik;Kim, Kwang-Seog;Lee, Han-Na;Lee, Joo-Yong;Back, Sun-Jung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • Juvenile banded catfish(Pseudobagurus fulvidraco, mean length $10.4{\pm}0.37cm$ and mean weight $14.5{\pm}0.46g$) were exposed to several nitrite(${NO_2}^-$) concentrations for 96h at pH levels of $6.18{\pm}0.54$, $6.5{\pm}0.30$ and $7.07{\pm}0.22$. The result showed that cumulative mortalities of fish to ${NO_2}^-$ levels of 12.4, 19.8, 33.9 and 53.6 mg/L at pH levels of $6.18{\pm}0.54$ were 20, 25, 40 and 85%, respectively. At pH $6.5{\pm}0.54$, mortalities to ${NO_2}^-$ 22.4, 36.4, 45.3 and 63.2 mg/L were 25, 35, 50 and 100%, respectively. At pH $7.07{\pm}0.22$, mortalities to ${NO_2}^-$ 25.5, 45.7, 56.3 and 66.4 mg/L were 0, 55, 70 and 100%, respectively. The 96h-$LC_{50}$(median lethal concentration, $LC_{50}$) of fish to several ${NO_2}^-$ concentrations at pH levels of $6.18{\pm}0.54$, $6.5{\pm}0.30$ and $7.07{\pm}0.22$ were assessed in these experiments. 96h-$LC_{50}$ at pH levels of $6.18{\pm}0.54$, $6.5{\pm}0.30$ and $7.07{\pm}0.22$ were 32.68, 40.49 and 45.85 mg/L, respectively. It indicated that acute toxicity of ${NO_2}^-$ to juvenile banded catfish increased with low levels of pH and lengthening of exposure time to ${NO_2}^-$. In particular, smaller fish(mean weight $14.5{\pm}0.46g$) were more sensitive to ${NO_2}^-$ than larger fish(mean weight $81.7{\pm}1.42g$; not published). The 96h-$LC_{50}$ of juvenile banded catfish to ${NO_2}^-$ would be primary guideline for water quality management in the intensive culture system such as RAS and BFT.

LC50 Determination of tert-Butyl Acetate using a Nose Only Inhalation Exposure in Rats

  • Yang, Young-Su;Lee, Jin-Soo;Kwon, Soon-Jin;Seo, Heung-Sik;Choi, Seong-Jin;Yu, Hee-Jin;Song, Jeong-Ah;Lee, Kyu-Hong;Lee, Byoung-Seok;Heo, Jeong-Doo;Cho, Kyu-Hyuk;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.293-300
    • /
    • 2010
  • tert-Butyl acetate (TBAc) is an organic solvent, which is commonly used in architectural coatings and industrial solvents. It has recently been exempted from the definition of a volatile organic compound (VOC) by the Air Resources Board (ARB). Since the use of TBAc as a substitute for other VOCs has increased, thus its potential risk in humans has also increased. However, its inhalation toxicity data in the literature are very limited. Hence, inhalation exposure to TBAc was carried out to investigate its toxic effects in this study. Adult male rats were exposed to TBAc for 4 h for 1 day by using a nose-only inhalation exposure chamber (low dose, $2370\;mg/m^3$ (500 ppm); high dose, $9482\;mg/m^3$ (2000 ppm)). Shamtreated control rats were exposed to clean air in the inhalation chamber for the same period. The animals were killed at 2, 7, and 15 days after exposure. At each time point, body weight measurement, bronchoalveolar lavage fluid (BALF) analysis, histopathological examination, and biochemical assay were performed. No treatment-related abnormal effects were observed in any group according to time course. Based on those findings, the median lethal concentration ($LC_{50}$) of TBAc was over $9482\;mg/m^3$ in this study. According to the MSDS, the 4 h $LC_{50}$ for TBAc for rats is over $2230\;mg/m^3$. We suggested that this value is changed and these findings may be applied in the risk assessment of TBAc which could be beneficial in a sub-acute study.

Evaluation of endocrine disrupting effect of the herbicide Alachlor on Japanese Medaka using short term reproduction assay (단기번식독성시험법을 이용한 제초제 Alachlor의 송사리 내분비계 영향 조사)

  • Lee, Je-Bong;Park, Yoen-Ki;Choi, Young-Woong;Kim, Byung-Seok;Kwon, Hye-Young;Jin, Yong-Duk;Im, Geon-Jae;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.187-193
    • /
    • 2012
  • Acute toxicity, water resolvability and short term reproduction test on Japanese medaka (Oriyzias latipes) for evaluating alachlor susceptibility to endocrine system were studied. Alachlor is known for suspected endocrine distruptors. As the results of tests, $LC_{50}$ (Median lethal concentration) was determined as 2.36 (1.994~2.805) mg/L, and test water replaced at 7 day intervals as its water resolvability was less than 20% in 7 days. The short term reproduction tests on Japanese medaka (Oriyzias latipes) were performed with a solvent control group, a treated group (alachlor concentrations of 0.02, 0.04, 0.11, 0.27, 0.68 ppm) and a positive control group (17 ${\beta}$ estradiol, 0.01, 0.1, 0.5 ppb). The number of spawning and embryo rates were declined in a alachlor-dose dependent manner, and the number of unfertilized eggs rates were in contrast increased depending on the concentrations. Further study should be needed to confirm whether the adverse effects may be effected by the concentrations. Additionally, alachlor was evaluated as a non-vitellogenin by the result of a test of significance of the vitellogenin content test for determination of the effect of estrogen among the endocrine disruptors.