• Title/Summary/Keyword: Membrane

Search Result 14,590, Processing Time 0.038 seconds

APPLICATION OF STABLE EMULSIONS TO LIPASE IMMOBILISED MEMBRANE REACTORS FOR KINETIC RESOLUTION OF RACEMIC ESTERS

  • Giorno, Lidietta;Na, Li;Drioli, Enrico
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.65-68
    • /
    • 2003
  • The paper discusses the use of stable emulsion, prepared by membrane emulsification technology, to improve the enantiocatalytic performance of immobilised lipase in multiphasic membrane reactors. The production of optical pure (S)-naproxen from racemic naproxen methyl ester has been used as model reaction system. The enzyme was immobilised in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off, The O/W emulsion, containing the substrate in the organic dispersed phase, was fed to the enzyme membrane reactor from shell-to-lumen. The results evidenced that lipase maintained stable activity during all the operation time (more than 250 hours), showing an enantiomeric excess (96 $\pm$2%) comparable to the free enzyme (98 $\pm$ 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The study showed that immobilised enzymes can achieve high stability as well as high catalytic activity and enantioselectivity.

  • PDF

Characteristics of Fouling in a Submerged Membrane Bioreactor Activated Sludge Process (침지형 막분리 활성 슬러지법에 따른 막 오염 특성)

  • 김대식;강종석;김기연;이영무
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.170-178
    • /
    • 2001
  • PVC microfiltration membrane was prepared by phase immersion method and applied to membrane bioreactor (MBR) contained activated sludge. The hydrophilicity of membrane and the pore size increase with the amount of additive(PVP) ducting the preparation of membrane. Permeation characteristics and the membrane fouling behavior were investigated by varying the internal environment in MBR using the prepared membranes. When there is a sludge bulking in MBR caused by microorganism, membrane fouling was accumulated. The cake layer resistance, R$_{c}$, of membrane increased in the order of CP-0 > CP-1.0 > CP-1.5. Rc increased up to 3.5~7 fold where the sludge bulking occurred in MBR. CP-1.5 seems to be appropriated membrane on the basis of the surface characteristics and the flux. The average flux of all the test membrane was 12(${\pm}$2) L/$m^2$hr whereas the COD removal efficiency was 98.8%. The ratio of bulking sludge and the type and the size of microorganism in operating MBR accelerate the membrane fouling and flux decline. It is concluded that the characteristic of membrane filtration depends on the hydrophilicity of membrane, the internal environment of MBR reactor and the growth factor of sludge.

  • PDF

Theoretical Overview of Membrane Transport (막물질 이동의 이론적 고찰)

  • Park, Young
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.94-107
    • /
    • 1993
  • Many researchers have discussed how membrane performance can be enhanced through an understanding of polymer science and engineering. The understandings of transport in porous membrane are used to achieve the isolation of certain components from mixtures. Particular emphasis is placed on the applicability of membrane separations for the isolation of macromolecules[1]. An awareness of membrane structure characteristics is required for the rational design of membranes for specific and/or new applications. This understanding rests on the knowledge of fields such as polymer thermodynamics[2], polymer adsorption [3, 4], diffusion in polymers[5, 6], reaction mechanism[7], and the dynamic behavior[8, 9] of polymer in porous membrane.

  • PDF

Adsorption of $\textrm{Pb}_{2+}$ in the components of bacterial cell membrane

  • Kim, Mal-Nam
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.278-282
    • /
    • 1995
  • S. epidermidis cell was fractionated into cell wall, cell membrane and cytoplasm. The cell membrane adsorbed the most abundant $\textrm{Pb}_{2+}$ per unit dry weight of the three fractions tested. Adsorption behavior of $\textrm{Pb}_{2+}$ in lipid and protein, which are the main components of the cell membrane, indicated that phosphatidylethanolamine and phosphatidylinositol having phosphoryl group and gangliosides containing carboxyl groups adsorbed much more $\textrm{Pb}_{2+}$ than triglycerides lacking any chargeable functional groups. Protein purified from cell membrane adsorbed larger amount of $\textrm{Pb}_{2+}$ than total native cell membrane or cell membrane lipid.

  • PDF

Sound Absorption Characteristics of Permeable Membrane (통기성을 갖는 막재료의 흡음특성)

  • Jeong, Jeong-Ho;Kim, Jung-Joong;Kim, Ku-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.270-275
    • /
    • 2009
  • Sound absorption characteristics of membrane system which are used in stadiums and arenas were investigated. Theoretical studies on acoustic properties of single and double leaf permeable membrane conducted. Also, experimental studies on sound absorption characteristics of combined membrane system that is composed of outer and inner membrane material were conducted. In this study, sound absorption characteristics of each membrane were investigated by experiments in reverberation chamber. 4 types of permeable membranes and a non-permeable membrane were used for experiments. Air space behind membrane material and tension on the membrane was varied. Sound absorption performance of permeable membrane materials was confirmed. As increasing air space behind the membrane material, sound absorption coefficient was increased. In a resonance absorption frequency band sound absorption coefficient varied more dramatically. Sound absorption characteristics were flat in mid and high frequency range and sound absorption coefficient was from 0,3 to 0,5. Also sound absorption coefficient was increased by the increment of surface density and air permeability of membrane. However, over the certain value of air permeability, sound absorption coefficient was decreased. These results can be used as design factors and method for the room acoustic design of dome-stadiums and large free-form buildings.

  • PDF

Utilization of aerobic granulation to mitigate membrane fouling in MBRs

  • Iorhemen, Oliver T.;Hamza, Rania A.;Tay, Joo Hwa
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.395-409
    • /
    • 2017
  • Membrane bioreactor (MBR) is a compact and efficient wastewater treatment and reclamation technology; but, it is limited by membrane fouling. The control of membrane fouling significantly increases operational and maintenance costs. Bacteria and their byproducts - extracellular polymeric substances (EPS) - are major contributors to membrane fouling in MBRs. A recent attempt at fouling mitigation is the development of aerobic granular sludge membrane bioreactor (AGMBR) through the integration of a novel biotechnology - aerobic granulation - and MBR. This paper provides an overview on the development of AGMBR to mitigate membrane fouling caused by bacteria and EPS. In AGMBR, EPS are used up in granule formation; and, the rigid structure of granules provides a surface for bacteria to attach to rather than the membrane surface. Preliminary research on AGMBR using synthetic wastewater show remarkable membrane fouling reduction compared to conventional MBR, thus improved membrane filtration. Enhanced performance in AGMBR using actual municipal wastewater at pilot-scale has also been reported. Therefore, further research is needed to determine AGMBR optimal operational conditions to enhance granule stability in long-term operations and in full-scale applications.

Preparation of Alumino-silicate Membrane and Its Application to a Gas Separation

  • 김태환
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.04a
    • /
    • pp.23-46
    • /
    • 2002
  • The cryogenic, pressure swing adsorption and membrane methods have been used to separate air into nitrogen and oxygen. The air separation membrane is made of the polymers, of which manufacturing process is complicate and it causes a little high production cost. Polymer membrane has temperature limit in usage and low durability even at moderate temperature. Therefore, inorganic membranes have been studied for years. As formation of unit alumino-silicate membrane, unit cells of membrane were made with a few coating methods. In this study the dipping of substrate into sols, application of vacuum to the opposite side of substrate with coating and rotating of the substrate in the sols were found as good coating memthods to make a uniform coating and to control the thickness of membrane. The membrane coats were examined by SEM and XRD. The sample ESZl-1 was compared with those of samples that prepared by another method. The present developed coating methods could be applied to the various types of zeolite membrane formation, that is A- X-, Y- ZSM- and MCM-types of membranes. Also these membrane forming methods could be applied to formation of catalyst absorbed zeolite membrane, of which zeolite absorb the catalytic metals. The product obtained from these coating methods could be applied to the industrial gas and liquid phase catalytic reaction and separation processes.

  • PDF

Diffusion Coefficients and Membrane Potential within Carrier Membrane by Reverse Transport System

  • Yang, Wong-Kang;Jeong, Sung-Hyun;Lee, Won-Chul
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 2002
  • The diffusion coefficients of ions in the reverse transport system using the carrier mediated membrane were estimated from the diffusional membrane permeabilities and the ion activity in membrane system. In the aqueous alkali metal ions-membrane system diffusional flux of alkali metal ions driven by coupled proton was analyzed. The aqueous phase I contained NaOH solution and the aqueous phase II also contained NaCl and HCl mixed solution. The concentration of Na ions of both phases were $10^{0},\;10^{-1},\;10^{-2},\;5{\times}10^{-1}\;and\;5{\times}10^{-2}\;mol{\cdot}dm^{-3}$ and the concentration of HCI in aqueous phase II was always kept at $1{\times}10^{-1}\;mol{\cdot}dm^{-3}$. Moreover, the carrier concentration in liquid membrane was $10^{-2}\;mol{\cdot}dm^{-3}$. The results indicated that the diffusion coefficients depend strongly on the concentration of both phases electrolyte solution equilibriated with the membrane. The points were interpreted in terms of the energy barrier theory. Furthermore, eliminating the potential terms from the membrane equation was derived.

Membrane fouling and sludge characteristics in submerged membrane bioreactor under low temperature

  • Yuan, Yuan;Zhang, Jianqiao
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.331-338
    • /
    • 2019
  • This study aimed to investigate the membrane fouling and sludge characteristics in a pilot-scale submerged membrane bioreactor (MBR) operated under low temperature ($7^{\circ}C$). To elucidate the mechanisms of membrane fouling at low temperature, we studied the correlation between MBR performances and physicochemical properties of sludge including extracellular polymeric substance (EPS), relative hydrophobicity (RH) and floc size during long-term operation. The MBR was shown able to remove chemical oxygen demand (COD) stably and efficiently (>90 %) in the case of overgrowth of filamentous bacteria (bulking sludge) at low temperature. On the other hand, the occurrence of filamentous bulking greatly accelerated membrane fouling, as indicated by membrane filtration period of 14 days for filamentous bulking at $7^{\circ}C$, in comparison with that of 27 days for non-bulking sludge at $24^{\circ}C$ The overgrowth of filamentous bacteria resulting from low-temperature condition led to an increased release of EPS, higher RH, smaller floc size and lower fractal dimension of sludge. These factors accelerated the formation of compact cake layer on membrane surface in association with performance diminution in terms of increase in transmembrane pressure (TMP) of the membrane and thus the decrease in membrane permeability.

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.