• Title/Summary/Keyword: Membrane transport function

Search Result 102, Processing Time 0.028 seconds

Alterations in Membrane Transport Function and Cell Viability Induced by ATP Depletion in Primary Cultured Rabbit Renal Proximal Tubular Cells

  • Lee, Sung-Ju;Kwon, Chae-Hwa;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • This study was undertaken to elucidate the underlying mechanisms of ATP depletion-induced membrane transport dysfunction and cell death in renal proximal tubular cells. ATP depletion was induced by incubating cells with 2.5 mM potassium cyanide(KCN)/0.1 mM iodoacetic acid(IAA), and membrane transport function and cell viability were evaluated by measuring $Na^+$-dependent phosphate uptake and trypan blue exclusion, respectively. ATP depletion resulted in a decrease in $Na^+$-dependent phosphate uptake and cell viability in a time-dependent manner. ATP depletion inhibited $Na^+$-dependent phosphate uptake in cells, when treated with 2 mM ouabain, a $Na^+$ pump-specific inhibitor, suggesting that ATP depletion impairs membrane transport functional integrity. Alterations in $Na^+$-dependent phosphate uptake and cell viability induced by ATP depletion were prevented by the hydrogen peroxide scavenger such as catalase and the hydroxyl radical scavengers(dimethylthiourea and thiourea), and amino acids(glycine and alanine). ATP depletion caused arachidonic acid release and increased mRNA levels of cytosolic phospholipase $A_2(cPLA_2)$. The ATP depletion-dependent arachidonic acid release was inhibited by $cPLA_2$ specific inhibitor $AACOCF_3$. ATP depletion-induced alterations in $Na^+$-dependent phosphate uptake and cell viability were prevented by $AACOCF_3$. Inhibition of $Na^+$-dependent phosphate uptake by ATP depletion was prevented by antipain and leupetin, serine/cysteine protease inhibitors, whereas ATP depletion-induced cell death was not altered by these agents. These results indicate that ATP depletion-induced alterations in membrane transport function and cell viability are due to reactive oxygen species generation and $cPLA_2$ activation in renal proximal tubular cells. In addition, the present data suggest that serine/cysteine proteases play an important role in membrane transport dysfunction, but not cell death, induced by ATP depletion.

Carrier-Mediated Active Transport Models by Affinity-Switching Strategy

  • Lee, Sung-Kil;Araki, Koji
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.5-10
    • /
    • 1996
  • Active transport is one of the essential function of biological membrane transport systems, in which substrates are transported from lower to higher concentration side against their concentration gradient. In this article, we describe photo- and pH-induced active transport models by designing the functional carriers based on the affinity-switching strategy.

  • PDF

Beneficial Effect of Scutellaria baicalensis Georgi Extract on Mercury Chloride-Induced Membrane Transport Dysfunction in Rabbit Renal Cortical Slices (황금약침액(黃芩藥鍼液)이 가토(家兎) 신피질절편(腎皮質切片)에서 수은(水銀)에 의한 세포막(細胞膜) 물질이동(物質移動) 기능장애(機能障碍)에 미치는 영향(影響))

  • Kim, Hong-Soo;Song, Choon-Ho
    • Journal of Pharmacopuncture
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • This study was undertaken to determine whether Scutellaria baicalensis Georgi (SbG) extract exerts the protective effect against $HgCl_2$-induced alterations in membrane transport function in rabbit renal cortical slices. The slices were treated with 0.1 mM $HgCl_2$ for 60 min at $37^{\circ}C$. $HgCl_2$ caused an inhibition in PAH uptake by renal cortical slices. Such an effect was accompanied by depressed $Na^+-K^+$-ATPase activity and ATP depletion. SbG prevented $HgCl_2$-induced inhibition of PAH uptake in a dose-dependent manner at the concentration ranges of 0.01-0.1%. $HgCl_2$-induced inhibition of $Na^+-K^+$-ATPase activity and ATP depletion were significantly prevented by 0.05% SbG. These results suggest that SbG prevents $HgCl_2$-induced alterations in membrane transport function in rabbit renal cortical slices. Such protective effects of SbG may be attributed to inhibition of peroxidation of membrane lipid.

Bioinformatic approaches for the structure and function of membrane proteins

  • Nam, Hyun-Jun;Jeon, Jou-Hyun;Kim, Sang-Uk
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.697-704
    • /
    • 2009
  • Membrane proteins play important roles in the biology of the cell, including intercellular communication and molecular transport. Their well-established importance notwithstanding, the high-resolution structures of membrane proteins remain elusive due to difficulties in protein expression, purification and crystallization. Thus, accurate prediction of membrane protein topology can increase the understanding of membrane protein function. Here, we provide a brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools. Our hope is that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioinformatics methods.

Effect of Salviae-radix on oxidant-induced impairment of membrane transport function in renal tubules (Oxidant에 의한 신장세뇨관 물질이동계의 장애에 대한 단삼(丹參)의 효과)

  • Kim, Sang-Beum;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.147-155
    • /
    • 1997
  • This study was undertaken to determine whether Salviae-radix (SVR) exraction exerts benefical effect against oxidant-induced inhibition of tetraethylammonium (TEA) uptake which is actively secreted by renal proximal tubules. TEA uptake increased as function of incubation time to 60 min. When renal cortical slices were exposed to 50 mM $H_2O_2$, TEA uptake was significantly inhibited. The inhibition was significantly protected by addition of 0.5% SVR extraction. The benefical effect of SVR was dose-dependent over the concentration range of 0.1-1%; $H_2O_2$ (50 mM)-induced inhibition of TEA uptake was completely protected by 0.5-1% SVR extraction. $H_2O_2$ increased LDH release which was accompanied by an increase in lipid peroxidation in renal cortical slices. These changes were prevented by 0.5% SVR. These results suggest that SVR exerts benefical effect against oxidant-induced impairment of membrane transport function, this effect may be due to by an antioxidant action.

  • PDF

The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids (세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.6
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

Benefical Effect of Cordyceps Sinensis Sacc. Extract (CSS) on Oxidant-Induced Membrane Tpransport Dysfunction in Rabbit Renal Cortical Slices (동충하초약침액(冬蟲夏草藥鍼液)이 가토(家兎) 신피질절편(腎皮質切片)에서 세포막물질이동계(細胞膜物質移動系)의 기능장애(機能障碍)에 미치는 영향(影響))

  • Cheon, Kap-Sool;Seo, Jung-Chul;Youn, Hyoun-Min;Song, Choon-Ho;Ahn, Chang-Beohm;Jang, Kyung-Jeon
    • Journal of Acupuncture Research
    • /
    • v.18 no.3
    • /
    • pp.123-133
    • /
    • 2001
  • Objective : This study was undertaken to determine whether Cordyceps sinensis Sacc. (CSS) extract exerts the protective effect against oxidant-induced alterations in membrane transport function in renal tubules. Methods : Membrane transport fucntion was estimated by examining alterations in p-aminohippurate (PAH) uptake in rabbit renal cortical slices. For induction oxidative stress, slices were treated with an organic peroxide cumene hydroperoxide for 60 min at $37^{\circ}C$. Cumene hydroperoxide inhibited PAH uptake in a time dependent manner. Results : CSS at 0.5-5% concentrations prevented cumene hydroperoxide-induced inhibition of PAH uptake. CSS at 1% also attenuated LDH release and lipid peroxidation induced by cumene hydroperoxide. When slices were treated with 0.2 mM mercury chloride, PAH uptake was inhibited and lipid peroxidation was increased. These changes by mercury were significantly prevented by CSS. Conclusion : These results suggest that CSS prevents oxidant-induced alterations in membrane transport function in rabbit renal cortical slices. Such protective effect of CSS may be attributed to inhibition of peroxidation of membrane lipid.

  • PDF

Mechanisms of Gas Permeation through Microporous Membranes - A Review (미세 다공막을 통한 기체 투과기구)

  • 황선탁
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • A review is presented for various gas transport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the interaction between gas molecules and the pore walls. For microporous membranes whose pores are small and the internal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, then the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

Effect of Scutellaria Baicalensis Georgi Extraction (SbGE) on H2O2-induced Inhibition of Phosphate Transport in Renal Epithelial Cells (황금약침액(黃芩藥鍼液)이 신장상피세포(腎臟上皮細胞)에서의 H2O2에 의한 인산염(燐酸鹽) 운반(運搬)의 억제(抑制)에 미치는 영향(影響))

  • Cho, Eun-jin;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-bo;Ahn, Chang-beobm
    • Journal of Acupuncture Research
    • /
    • v.19 no.4
    • /
    • pp.190-199
    • /
    • 2002
  • Objective : This study was performed to determine if Scutellaria balicalensis Georgi extract (SbGE) prevents oxidant-induced membrane transport dysfunction in renal tubular cells. Methods : Membrane transport function was estimated by measuring $Na^+$-dependent inorganic phosphate transport in opossum kidney (OK) cells. $H_2O_2$ inhibited phosphate transport in a dose-dependent manner. Results : The inhibitory effect of $H_2O_2$ was significantly prevented SbGE over concentration range of 0.005-0.05%. $H_2O_2$ caused ATP depletion, which was prevented by SbGE. $H_2O_2$ induced the loss of mitochondrial function as evidenced by decreased MTT reduction and its effect was prevented by SbGE. The $H_2O_2$-induced inhibition of phosphate transport was not affected by a potent antioxidant DPPD, but the inhibition was prevented by an iron chelator deferoxamine, suggesting that $H_2O_2$ inhibits $Na^+$-dependent phosphate transport via an iron-dependent nonperoxidative mechanism in renal tubular cells. Conclusion : These data suggest that SbGE may exert the protective effect against oxidant-induced membrane transport dysfunction by a mechanism similar to iron chelators in renal epithelial cells. However, furher studies should be carried out to find the active ingredient(s) of SbGE that exerts the protective effect.

  • PDF

Hydrogen Peroxide-induced Alterations in Na+-phosphate Cotransport in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.2
    • /
    • pp.83-92
    • /
    • 2009
  • This study was undertaken to examine the effect of oxidants on membrane transport function in renal epithelial cells. Hydrogen peroxide ($H_2O_2$) was used as a model oxidant and the membrane transport function was evaluated by measuring $Na^+$-dependent phosphate ($Na^+$-Pi) uptake in opossum kidney (OK) cells. $H_2O_2$ inhibited $Na^+$-Pi uptake in a dose-dependent manner. The oxidant also caused loss of cell viability in a dose-dependent fashion. However, the extent of inhibition of the uptake was larger than that in cell viability. $H_2O_2$ inhibited $Na^+$-dependent uptake without any effect on $Na^+$-independent uptake. $H_2O_2$-induced inhibition of $Na^+$-Pi uptake was prevented completely by catalase, dimethylthiourea, and deferoxamine, suggesting involvement of hydroxyl radical generated by an iron-dependent mechanism. In contrast, antioxidants Trolox, N,N'-diphenyl-p-phenylenediamine, and butylated hydroxyanisole did not affect the $H_2O_2$ inhibition. Kinetic analysis indicated that $H_2O_2$ decreased Vmax of $Na^+$-Pi uptake with no change in the Km value. Phosphonoformic acid binding assay did not show any difference between control and $H_2O_2$-treated cells. $H_2O_2$ also did not cause degradation of $Na^+$-Pi transporter protein. Reduction in $Na^+$-Pi uptake by $H_2O_2$ was associated with ATP depletion and direct inhibition of $Na^+$-$K^+$-ATPase activity. These results indicate that the effect of $H_2O_2$ on membrane transport function in OK cells is associated with reduction in functional $Na^+$-pump activity. In addition, the inhibitory effect of $H_2O_2$ was not associated with lipid peroxidation.

  • PDF