• Title/Summary/Keyword: Membrane-Free Stem Cell Extract

Search Result 3, Processing Time 0.019 seconds

Protective Effects of Membrane-Free Stem Cell Extract from H2O2-Induced Inflammation Responses in Human Periodontal Ligament Fibroblasts (무막줄기세포추출물의 H2O2에 의해 유도된 치주 세포의 염증 반응 보호 효과)

  • He, Mei Tong;Kim, Ji Hyun;Kim, Young Sil;Park, Hye Sook;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.95-103
    • /
    • 2019
  • Periodontal inflammation, a major kind of periodontal diseases, is characterized to bleed, pain, and teeth loss, and it is resulted from oxidative stress. Membrane-free stem cell extract could avoid the immunogencity rejection by removal of cell membrane. In the present study, we investigated the protective effect of membrane-free stem cell extract from oxidative stress-induced periodontal inflammation in human periodontal ligament fibroblasts (HPLF). In the cell viability measurement, membrane-free stem cell extract showed significant increase of cell viability, compared with the $H_2O_2$-treated control group. To further investigation of molecular mechanisms, we measured inflammation and apoptosis related protein expressions. Membrane-free stem cell extract attenuated inflammation-related protein expressions such as nuclear factor kappa light chain enhancer of activated B cells, inducible nitric oxide synthase, and interleukin-6. In addition, the treatment of membrane-free stem cell extract decreased apoptotic protein expressions such as cleaved caspase-9, -3, poly (ADP-ribose) polymerase, and B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 ratio in the $H_2O_2$-treated HPLF cells. In conclusion, membrane-free stem cell extract exhibited anti-oxidative stress effects by regulation of inflammation and apoptosis in HPLF, suggesting that it could be used as the treatment agents for periodontal inflammatory disease.

Membrane Free Stem Cell Extract from Adipose Tissue Enhances Glucose Uptake in 3T3-L1 Cells (무막줄기세포추출물의 3T3-L1 세포에서 포도당 흡수 촉진 효과)

  • Kim, Ji Hyun;Kim, Min Jeong;Park, Hye Sook;Kim, Young Sil;Cho, Eun Ju
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 2019
  • Objectives: We investigated whether membrane free stem cell extract from adipose tissue (MFSCE) has anti-diabetic effect. Methods: To determine glucose uptake effect of MFSCE, we carried out glucose uptake assay in 3T3-L1 adipocytes. The regulatory mechanisms of MFSCE on glucose uptake were examined by Western blot analysis. Results: When MFSCE was treated to adipocytes at the concentration of 0.5, 1, 2.5, and 5 ㎍/mL, 2-deoxyglucose-6-phosphate uptake was elevated approximately 1.8-fold compared to cells not treated with MFSCE. It indicated that MFSCE enhances glucose uptake in 3T3-L1 adipocytes. In addition, MFSCE reduced phosphorylation of insulin receptor substrate-1 at serine 307 and induced Akt and glucose transporter 4 protein expressions that were related to insulin signaling. Furthermore, MFSCE regulated adenosine monophosphate-activated protein kinase (AMPK) pathway by increases of increase phosphorylation of AMPK and acetyl-CoA carboxylase that were related to AMPK pathway. Conclusions: These results indicated that MFSCE promotes glucose uptake via modulation of insulin signaling and AMPK pathway. Therefore, MFSCE could be a promising agent for treatment of diabetes mellitus.

Protective Effect of Membrane-Free Stem Cell Extract against Oxidative Stress in LLC-PK1 Cells (무막줄기세포추출물의 LLC-PK1 세포에서의 산화적 스트레스 개선 효과)

  • Kim, Min Jeong;Kim, Ji Hyun;Park, Hye Sook;Kim, Young Sil;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.303-312
    • /
    • 2019
  • Oxidative stress in kidneys can precede the development of chronic renal injury. We investigated the antioxidative effect of membrane-free stem cell extract (MFSCE) from adipose tissue in LLC-$PK_1$ renal proximal tubule cells. Treatment of LLC-$PK_1$ cells with MFSCE showed the up-regulation of heme-oxygenase-1, thioredoxin reductase 1, and NADPH quinine oxidoreductase-1 protein expressions, which are proteins related with antioxidative activities. When oxidative stress was induced by 3-morpholinosydnonimine (SIN-1), cell viability was decreased, indicating that LLC-$PK_1$ cells were damaged by SIN-1. However, MFSCE significantly elevated cell viability from 58.84% to 64.43% at the concentration of $2.5{\mu}g/mL$ in oxidative stress-induced LLC-$PK_1$ cells. Furthermore, MFSCE ameliorated inflammation and apoptosis in SIN-1-treated LLC-$PK_1$ cells by modulating protein expressions. Inducible nitric oxide synthase and cyclooxygenase-2 protein expressions were down-regulated when LLC-$PK_1$ cells were treated with MFSCE. Apoptosis-related proteins, including B-cell lymphoma-2-associated X protein/B-cell lymphoma-2 ratio, cleaved caspase-3, and cleaved-poly (ADP-ribose) polymerase, were also down-regulated. It indicated that MFSCE protected apoptosis against oxidative stress in LLC-$PK_1$ cells. Taken together, these results suggested that MFSCE had a protective effect against SIN-1-induced oxidative stress in LLC-$PK_1$ cells. Therefore, MFSCE could be a promising therapeutic agent for oxidative stress-induced renal injury.