• 제목/요약/키워드: Membranes

검색결과 3,768건 처리시간 0.024초

PERMEATION OF CARBON DIOXIDE AND NITROGEN GASES THROUGH POLY(AMIDE-IMIDE)/POLYURETHANE AND POLYCARBONATE/POLYURETHANE BLEND MEMBRANES

  • Kim, Min-Joung;Sea, Bong-Kuk;Park, You-In;Youm, Kyung-Ho;Lee, Kew-Ho
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.87-89
    • /
    • 2003
  • Thermoplastic polyurethane(PU)-based blend membranes were prepared by the solvent evaporation process. The gas sorption, diffusion, and permeation properties of PU-based blend membranes have been studied. The morphology of PU-based blend membranes was investigated by SEM. The result showed that phase separation occurred with increasing blend ratio. $CO_2$ permeation behaviors of blend membranes were affect by blend composition. Thermoplastic polyurethane(PU)-based membranes showed high $CO_2$ permeation and $CO_2$/$N_2$ selectivity of the blend membrane was improved with increasing the blend ratio.

  • PDF

Gas Permeable Membranes Composed of Carboxylated Poly(vinyl chloride) and Polyurethane

  • 임전원;김채균;김완영;정용섭;이윤식
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권6호
    • /
    • pp.672-676
    • /
    • 1999
  • Gas-Permeable polymeric membranes containing carboxyl groups which are suitable for enzyme immobilization were investigated in order to use them as gas electrode membranes in biosensors. Carboxylated polyurethane (CPU) was synthesized via a reaciton between 2,2-bis(hydroxymethyl)propionic acid as a chain extender and prepolymers prepared from polycarprolactone(Mn=2,000) and 4,4'-diphenylmethane diisocynate. It was difficult to prepared membranes from the pure CPU because of its high elasticity and cohesion. However, transparent free-standing membranes were easily prepared from the blend solution of CPU and carboxylated poly(vinyl chloride)(CPVC) in tetrahydrofuran. Both elasticity and cohesion of the CPU/CPVC membranes were decreased with increasing the content of CPVC. DSC experiment suggests that CPU and CPVC may be well mixed. Permeability coefficients for O₂and CO₂(Po₂and Pco₂)in the membranes increased as the proportion of CPU increased. The addition of dioxtyl phthalate(DOP), a plasticizer, significantly enhanced the Po₂and Pco₂which were 4,4 and 30 barrer, respectively, in the CPU/CPVC(80/20 wt/wt) membranes containing 20% of DOP at 25℃ and 100psi. Thus this type of membranes may have a potential for the use as gas electrode membranes in biosensors.

Development of Pore-filled Ion-exchange Membranes for Efficient All Vanadium Redox Flow Batteries

  • Kang, Moon-Sung
    • 전기화학회지
    • /
    • 제16권4호
    • /
    • pp.204-210
    • /
    • 2013
  • Thin pore-filled cation and anion-exchange membranes (PFCEM and PFAEMs, $t_m=25-30{\mu}m$) were prepared using a porous polymeric substrate for efficient all-vanadium redox flow battery (VRB). The electrochemical and charge-discharge performances of the membranes have been systematically investigated and compared with those of commercially available ion-exchange membranes. The pore-filled membranes were shown to have higher permselectivity as well as lower electrical resistances than those of the commercial membranes. In addition, the VRBs employing the pore-filled membranes exhibited the respectable charge-discharge performances, showing the energy efficiencies (EE) of 82.4% and 84.9% for the PFCEM and PFAEM, respectively (cf. EE = 87.2% for Nafion 1135). The results demonstrated that the pore-filled ion-exchange membranes could be successfully used in VRBs as an efficient separator by replacing expensive Nafion membrane.

Anion Exchange Membrane Having Permselectivity specific Anion in Electrodialysis

  • Sata, Toshikatsu
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.1-6
    • /
    • 1998
  • To change permselectivity between anions through the anion exchange membrane in electrodialysis, the various modified anion exchange membranes were prepared: highly crosslinked anion exchange membranes, anion exchange membranes having benzyl trialkylammonium groups with different carbon number of alkyl chain as anion exchange groups and anion exchange membranes having pyridinium groups with a hydrophilic or hydrophobic substituent at a different position as anion exchange groups. It became clear from the evaluation of these membranes that the degree of the hydrophilicity of the anion exchange membranes greatly affects the permselectivity between two artions. To increase the hydrophiticity of the anion exchange membranes further, electrodialysis was carried out in the presence of ethylene glycols and the permeation of strongly hydrated anions increased and that of less-hydrated anions decreased. It became clear that the change in the permselectivity between two artions is due to the change in the affinity of anions to the membranes, not the change in mobility ratio of the anions in the membranes phase.

  • PDF

Cell Separation through chemically modified polyurethane membranes

  • Akon Higuchi;Ryoko Hayashi;Yamamiya, Shin-ichi;Hanako Kitamura
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.55-58
    • /
    • 2004
  • Cell separation from peripheral blood was investigated using surface-modified polyurethane (PU) membranes with different functional groups. Both red blood cells and platelets could pass through unmodified PU and PU-SO$_3$H membranes, while the red blood cells preferentially passed through PU-N(C$_2$H$_{5}$ )$_2$ and PU-NHC$_2$H$_4$OH membranes. The permeation ratio of T and B cells was less than 25% for the surface-modified and unmodified PU membranes. CD34$^{+}$ cells have been recognized as various kinds of stem cells including hematopoietic and mesenchymal stem cells. The adhesiveness of CD34$^{+}$ cells on the PU membranes was found to be higher than that of red blood cells, platelets, T cells or B cells. Overall, the adhesiveness of blood cells on the PU membranes increased in the following order: red blood cells $\leq$ platelets < T cells $\leq$ B cells < CD34$^{+}$ cells. Treatment of PU-COOH membranes with a human albumin solution to detach adhered blood cells, allowed recovery of mainly CD34$^{+}$ cells in the permeate, while both red blood cells and platelets could be isolated in the permeate using unmodified PU membranes. The PU membranes showed different permeation and recovery ratios of specific cells depending on the functional groups attached to the membranes.mbranes.

  • PDF

A Comprehensive Understanding of Model Lipid Membranes: Concepts to Applications

  • Sonam Baghel;Monika Khurana
    • 대한화학회지
    • /
    • 제67권2호
    • /
    • pp.89-98
    • /
    • 2023
  • The cell membrane, also known as the biological membrane, surrounds every living cell. The main components of cell membranes are lipids and therefore called as lipid membranes. These membranes are mainly made up of a two-dimensional lipid bilayer along with integral and peripheral proteins. The complex nature of lipid membranes makes it difficult to study and hence artificial lipid membranes are prepared which mimic the original lipid membranes. These artificial lipid membranes are prepared from phospholipid vesicles (liposomes). The liposomes are formed when self-forming phospholipid bilayer comes in contact with water. Liposomes can be unilamellar or multilamellar vesicles which comprises of phospholipids that can be produced naturally or synthetically. The phospholipids are non-toxic, biodegradable and are readily produced on a large scale. These liposomes are mostly used in the drug delivery systems. This paper offers comprehensive literature with insights on developing basic understanding of lipid membranes from its structure, organization, and phase behavior to its potential use in biomedical applications. The progress in the field of artificial membrane models considering methods of preparation of liposomes for mimicking lipid membranes, interactions between the lipid membranes, and characterizing techniques such as UV-visible, FTIR, Calorimetry and X-ray diffraction are explained in a concise manner.

세라믹-실리콘 복합막의 기체투과 특성 (Gas Permeation Properties of the Ceramics-Silicone Composite Membranes)

  • 황승노;양재건;정일현
    • 공업화학
    • /
    • 제8권3호
    • /
    • pp.374-381
    • /
    • 1997
  • 유리를 원료로 주형법에 의해 세라믹막을 제조하고, sodiumate, $S_3$-Al, $S_3$등의 실리콘 화합물을 침적시켜 세라믹-실리콘 복합막을 제조하여 이에 따른 기체 투과특성에 대해 연구하였다. 제조된 세라믹막과 세라믹-sodiumate 복합막은 다공성 구조임을 알수 있었고, 세라믹-$S_3$-Al과 세라믹-$S_3$ 복합막은 실리콘 화합물의 공극도입에 의한 치밀한 공극구조가 확인되었다. 세라믹막과 세라믹-sodiumate막의 경우 온도가 증가함에 따라 투과속도가 감소하고 압력에 따라 선형적으로 투과속도가 증가하였으며, 세라믹-$S_3$-Al과 세라믹-$S_3$ 복합막은 온도가 증가함에 따라 투과속도가 증가하는 경향을 보였으며, 상대적으로 투과속도에 미치는 압력의 영향이 적었다. 투과속도는 세라믹막이 가장 빠르게 나타났고, 세라믹-sodiumate, 세라믹-$S_3$-Al, 세라믹-$S_3$ 복합막 순서였으며, 선택도는 이와 반대 경향을 보였다. 또한 침적을 통한 투과속도를 구하여 실제 복합막의 투과속도와 비교한 결과, $S_3$가 가장 큰 영향이 있음을 확인하였다. 투과 메카니즘의 변화에서 세라믹막과 세라믹-sodiumate 복합막은 온도에 따라 투과기체의 투과도가 감소하는 Knudsen영역의 투과특성을 보였으나, 세라믹닉-$S_3$-Al과 세라믹-$S_3$ 복합막은 이와 반대로 온도에 따라 투과도가 증가하는 activated 확산 메카니즘을 따르는 특성을 보였다.

  • PDF

A SURVEY OF THE DEVELOPMENT OF MEMBRANE SCIENCE AND TECHNOLOGY IN CHINA

  • Congjie, Gao
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.12-12
    • /
    • 2004
  • A brief introduction was given in this paper for the research and development on membrane science and technology in China. Ion exchange membranes and electrodialysis, MF, UF, NF and RO membranes, gas separation (GS) membranes, pervaporation (PV), membranes, inorganic membranes (IM) and membrane reactors (MR) were involved.(omitted)

  • PDF

테트라싸이클린 처리된 흡수성 및 비흡수성 조직유도재생술용 막에의 세균부착과 침투양상 (Bacterial attachment and penetration to Tetracycline-treated resorbable and nonresorbable membranes for GTR)

  • 이호재;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제27권1호
    • /
    • pp.19-43
    • /
    • 1997
  • The barrier membranes for GTR procedure could be affected bY bacterial contamination after exposure to oral environment. This study was done to evaluate whether the tetracycline impregnated barrier membranes could inhibit bacterial attachment and penetration into membranes. The resorbable membrane(polylactic and polyglycolide copolymer, $Resolute^{(R)}$, W.L Gore and Associates, Inc..USA) and the non-resorbable membrane(e-PTFE; Gore-TexTM, W.L. Gore & Associates, Inc.,USA) were cut into 4mm discs and trated with 5% tridodecylmethylammonium chloride solution in ethanol and dried in air. The membranes were immersed in tetracycline(TC) solution (100mg/ml, pH 8.0) and dried. To the maxillary canine-premolar region in six periodontally healthy volunteers, removable acrylic devices were inserted, on which 8 cylindrical chambers were glued with TC impregnated and non-impregnated discs, the membrane discs were examined for bacterial attachment and penetration, and structural changes under SEM and LM. From the 1st day to the 7th day, membranes showed bacterial plaque formation composed of cocci and rods. Thereafter, filamentous bacteria appeared and the plaque thickness increased. The TC impregnated e-PTFE membranes showed less bacterial attachment and delayed in bacterial plaque maturation than non-treated membranes. As for bacterial penetration, the TC impregnated e-PTFE membranes showed superficial invasion and infrequent presence of bacteria in unexposed inner surface at the 4th week. while the non-treated e-PTFE membranes showed deep bacterial invasion at the 2nd week and frequent presence of internal bacteria at the 4th week. The resorbable membranes started to be resorbed at the 2nd week and were perforated at the 4th week, regardless of TC treatment. In conclusion, bacterial plaque formation and penetration was efficiently delayed in TC impregnated e-PTFE membranes, whereas resorbable membranes were similar in bacterial invasion due to membrane degradation and perforation, regardless of TC treatment.

  • PDF

무수 전도성 양성자 교환막 제조 및 특성평가 (Preparation and characterization of proton exchange membranes in non-aqueous conduction)

  • 박진수;;백지숙;양태현;김창수;임성대;박구곤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.282-285
    • /
    • 2009
  • This study presents preparation and characterization of composite membranes based on ionic liquids. The ionic liquids act as water in sulfonated membranes. On the behalf of ionic conduction through ionic liquid inside the membranes, non-aqueous membranes showed Arrenhius dependence on temperature with no external humidification. It was implied that hopping mechanism of proton was dominant in the ionic liquid based membranes. In addition, small angle X-ray (SAXS) studies provided the information on morphology of ionic clusters formed by the interaction between sulfonic acid groups of the polymers and ionic liquids. The SAXS spectra showed matrix peaks, ionomer peaks and Prodo's law for Nafion based composite membranes and only matrix peaks for hydrocarbon based ones. However, ionic conductivity and atomic force microscopy (AFM) images showed the clear formation of ionic clusters of the hydrocarbon based composite membranes. It implies for ionic liquid based high temperature membranes that it is important to use sulfonated polymers as solid matrix of ionic liquid which can form clear ionic clusters in SAXS spectra.

  • PDF