• Title/Summary/Keyword: Mercuric Iodide

Search Result 10, Processing Time 0.024 seconds

Characterization studies of digital x-ray detector based on mercuric iodide (Mercuric iodide 기반의 디지털 X-선 검출기의 특성 연구)

  • Cho, Sung-Ho;Park, Ji-Koon;Choi, Jang-Yong;Suck, Dae-Woo;Cha, Byung-Yul;Nam, Sang-Hee;Lee, Byum-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.392-395
    • /
    • 2003
  • For the purpose of digital x-ray imaging, many materials such as $PbI_2$, $HgI_2$, TlBr, CdTe and CdZnTe have been under development for servaral years as direct converter layer. $Hgl_2$ film detector have recently been shown as one of the most promising semiconductor materials to be used as direct converters in x-ray digital radiography. This paper, the $HgI_2$ films are deposited on conductive-coated glass by screen printing, in which $HgI_2$ powder is embedded in a binder and solvent, and the slurry is used to coat the conductive-coated glass. We investigated electrical characteristic of the fabricated $HgI_2$ films. The x-ray response to radiological x-ray generator of 70Kvp using the current integration mode will be reported for screen printing films. These results indicate that $HgI_2$ detectors have high potential as new digital x-ray imaging devices for radiography.

  • PDF

I-V Measurements of large area $HgI_2$ X-ray detector produced by PIB method (PIB법을 이용한 대면적 $HgI_2$ 검출기의 I-V 특성평가)

  • Kim, Kyung-Jin;Park, Ji-Koon;Kang, Sang-Sik;Cha, Byung-Youl;Cho, Sung-Ho;Sin, Jeong-Uk;Mun, Chi-Ung;Nam, Sang-Hee;Kim, Jin-Yung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.254-255
    • /
    • 2005
  • In this paper, we investigated electrical characteristics of the X-ray detector of mercuric iodide (HgI2) film fabricated by PIB(Particle-in-Binder) Method on ITO substrates 17cm$\times$20cm in size with thicknesses ranging from approximately 200${\mu}m$ to 240${\mu}m$. In the present study, using I-V measurements, their electrical properties such as leakage current, X-ray sensitivity, and signal-to-noise ratio (SNR),were investigated. The results of our study can be useful in the future design and optimization of direct active-matrix flat-panel detectors (AMFPD) for various digital X-ray imaging modalities.

  • PDF

Study on the effect of DSSC(Dye Sensitizer Solar Cell) Material on the electrical properties of Mercuric Iodide (염료감응형태양열 물질이 요오드화수은의 전기적 특성에 미치는 영향에 관한 연구)

  • Cho, Gyu-Seok;Park, Ji-koon;Heo, Seung-Wook;Song, Yong-keun;Han, Moo-Jae;Kim, Kum-Bae;Choi, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.525-529
    • /
    • 2017
  • As a photoconductive material with a high X-ray sensitivity, many researches about mercury iodide has been carried out to substitute for amorphous selenium. However, it has many limitations in commercialization because of the high leakage current. In this study, we fabricated $HgI_2$ unit-cells with mixed silicon oxide($SiO_2$) and titanium oxide($TiO_2$) to reduce a high leakage current and we evaluated an electrical properties of the fabricated unit-cells. As a result, we confirmed that both mixtures were effective in reduing the leakage current of the $HgI_2$ and x-ray sensitivity were significantly increased in fabricated $HgI_2-TiO_2$ unit-cell.

Fabrication and Characterization of Polycrystalline Mereuric Iodide Films using Particle-in-Binder Methods (Particle-in-Binder(PIB) 법을 이용한 다결정 $HgI_2$ 필름 제작 및 특성 연구)

  • Cha, Byung-Youl;Cho, Sung-Ho;Kim, So-Yeong;Woon, Min-Seuk;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.330-330
    • /
    • 2007
  • Polycrystalline mercuric iodide $HgI_2$) films are being developed as a new detector technology for digital x-ray imaging. The $HgI_2$ is generally vacuum deposited by physical vapor deposition (PVD) process. But the PVD thick deposition has been caused any instability in the biasing due to any defects or cracks. In this work we present a new particle-in-binder (PIB) methodologies used for the $HgI_2$ thick films. These growth techniques can be easily extended to produce much larger film areas. This paper, for the first time, presents results and comparison of polycrystalline $HgI_2$ films derived by various PIB methods. We investigated the structural and morphological properties of the films using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The films were characterized with respect to their electrical properties and in response to x-ray photons. Physical and electrical results were also compared between conventional polycrystalline PVD and our detectors. Leakage current as low as $350\;pA/cm^2$ at the bias voltage of ~ 200 V has been observed. And high sensitivity and good linearity in the response to x-rays was obtained in the film derived by PIB sedimentation method. Our future efforts will concentrate on optimization of film growth techniques for uniform large area deposition on image readout arrays.

  • PDF

Design and Fabrication of HgI2 Sensor for Phosphor Screen based flat panel X-ray Detector (형광체 스크린 기반 평판형 X선 검출기 적용을 위한 요오드화수은 필름 광도전체 센서 설계 및 제작)

  • Park, Ji Koon;Jung, Bong Jae;Choi, Il Hong;Noh, Si Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.189-194
    • /
    • 2014
  • In this study, from a new x-ray detector that combines a columnar CsI:Na scintillation layer with a photosensitive mercuric iodide layer was investigated. In this structure, X-rays are converted into visible light on a thick CsI:Na layer, which is then converted to electric charges in a thin $HgI_2$ bottom layer. The thin coplanar mercuric iodide films as a photosensitive converter requiring only a few tens of volts of bias, associated with a thick columnar coating of phosphor layer, were simulated and designed. The results of this research suggest that the new coplanar x-ray detector with a hybrid-type structure can resolve the following problems: high voltage from the a-Se, and low conversion efficiency from the indirect conversion method. The results of this research suggest that the new CsI:Na/$HgI_2$ x-ray detector with a double-layer type structure can resolve the following problems: high voltage from the direct conversion method, and low conversion efficiency from the indirect conversion method.

Study on Characteristic difference of Semiconductor Radiation Detectors fabricated with a wet coating process

  • Choi, Chi-Won;Cho, Sung-Ho;Yun, Min-Suk;Kang, Sang-Sik;Park, Ji-Koon;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.192-193
    • /
    • 2006
  • The wet coating process could easily be made from large area film with printing paste mixed with semiconductor and binder material at room temperature. Semiconductor film fabricated about 25mm thickness was evaluated by field emissions-canning electron microscopy (FE-SEM). X-ray performance data such as dark current, sensitivity and signal to noise ratio (SNR) were evaluated. The $Hgl_2$ semiconductor was shown in much lower dark current than the others, but the best sensitivity. In this paper, reactivity and combination character of semiconductor and binder material that affect electrical and X-ray detection properties would prove out though experimental results.

  • PDF

The Evaluation and Fabrication of Photoconductor Sensor for Quality Assurance of Radiation Therapy Devices (방사선치료기기 정도관리를 위한 광도전체 센서 제작 및 평가)

  • Kang, Sang Sik;Noh, Sung Jin;Jung, Bong Jae;Noh, Ci Chul;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.565-569
    • /
    • 2016
  • Recently, a use of linear accelerator with a multi-leaf collimator(MLC) for radiation therapy is increasing. The importance of quality assurance (QA) for the linear accelerator is emphasized as the side effects of the inaccurate delivery of the radiation beam has been increased according to the high dose irradiation technique. In this study, The $HgI_2$ and $PbI_2$ photoconductor layer samples of $400{\mu}m$ thickness were fabricated using sedimentation method among particle-in-binder technology. From the fabricated samples, the electrical properties(dark current, output current, response properties and linearity) were investigated. From the experimental results, $HgI_2$ has good charge signal generation and linearity. Finally, from the signal response results about various thickness of $HgI_2$ sensor, the signal creation efficiency of $400{\mu}m$ thickness of $HgI_2$ sensor has the highest value and the excellent reproducibility below ${\pm}2.5%$.

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.