• Title/Summary/Keyword: Mesh Superposition

Search Result 12, Processing Time 0.025 seconds

Local Response Recovery for Multilayered Composite Panels using Mesh Superposition (유한요소격자중첩을 이용한 복합재료평판의 변위 및 응력의 복원)

  • 박진우;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.89-92
    • /
    • 2000
  • In this paper, an effective procedure is presented for the local recovery of displacements and stresses in multilayered composite panels, which incorporate the local refinement using mesh superposition. The mesh superposition method is used to refine the global coarse mesh by superimposing refined mesh to the localized zone of interest without transition zones. The finite element model used is a solid element based on the Hellinger-Reissner variational principle. The a posteriori computation of the through-the-thickness distributions of displacements and stresses is achieved using a predictor-corrector procedure. The procedure utilizes the superconvergent stresses and nodal displacements of the finite element patch. The element patch is generated by locally superimposing a refined local mesh to the coarse global mesh.

  • PDF

Surfacing Process of Pulsed Nd:YAG laser by using Multiple mesh and Pulse Superposition Technique (다단메쉬 및 펄스중첩법을 적용한 펄스형 Nd:YAG의 Surfacing Process)

  • Joung, J.H.;Hong, J.H.;Kim, D.H.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.373-375
    • /
    • 1997
  • In this study, we designed multiple mesh circuit consisting of 3-6 meshes and pulse superposition one consisting of a 3 mesh, and fabricated the electrical power supply and the single elliptical resonator. We developed the two pulse superposition technique forming the step pulse shapes of pulsed Nd:YAG laser with single shot multivibrator and 2 SCRs. Laser beam generated by multiple mesh circuit and superposition one respectively irradiated target surface to analyze process state of surface with spark and vapor. And it was obtained experimental results that all superposition meshes had common points which the best efficiency was obtained at delay time 0[${\mu}s$], followed by, no superposition and obtained at delay time 250[${\mu}s$].

  • PDF

A Study on Efficient Analysis of Delamination Buckling of Composite Structures (효율적인 복합재료구조물의 delamination buckling 해석기법에 관한 연구)

  • 황재웅;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.80-84
    • /
    • 2000
  • A mesh superposition technique is presented for an efficient analysis of structural behavior. Refined child mesh is superimposed over parent elements for the region of interest. It is a kind of adaptive mesh refinement, which allows locally refined mesh without introducing transition region or multipoint constraints. Proper boundary condition is necessary to avoid redundant rigid body motion and kinematic compatibility between neighbor elements. Delamination buckling analysis is conducted to demonstrate accuracy and efficiency of the present method.

  • PDF

Adaptive Analysis of Multilayered Composite and Sandwich Plates (적층복합재료 및 샌드위치 판의 적응해석)

  • 박진우;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.224-227
    • /
    • 2001
  • Adaptive analysis of multilayered composite and sandwich plates is carried out. The adaptive analysis is based on a finite element error form, which measures the difference between the through-the-thickness distribution of finite element displacement and the actual displacement. The region where the error-measure exceeds the prescribed admitted error value, the finite element mesh locally refined in the thickness direction using the mesh superposition technique. Several numerical tests are conducted to validate the effectiveness of the current approach for adaptive analysis of laminated plates.

  • PDF

Efficiency Improvement of Pulsed Nd:YAG Laser using Pulse Superposition Technique (펄스중첩기술을 적용한 펄스형 Nd:YAG 레이저의 효율개선)

  • Kwak, B.G.;Jung, J.H.;Lee, D.H.;Hong, J.H.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1864-1866
    • /
    • 1997
  • In this study, we designed the pulse superposition network consisting of a six-mesh and a three-mesh network, and fabricated the electrical power supply and the single elliptical resonator. We have developed a tec.bnique forming the step-pulse shape of pulsed Nd:YAG laser by using one shot multivibrater and have studied on the effect of two pulses superposition for the output and efficiency improvement of pulsed Nd:YAG laser by superposing a sinusoidal pulse on a main pulse.

  • PDF

Combined Extended and Superimposed Finite Element Method for Crack Analysis (균열해석을 위한 겹침확장 유한요소법)

  • 이상호;송정훈;허문석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.341-348
    • /
    • 2004
  • This paper presents a modeling technique of cracks by combined extended and superposed finite element method (XSFEM) which is a combination of the extended finite element method (XFEM) and the mesh superposition method (sversion FEM). In the proposed method, the near-tip field is modeled by a superimposed patch consisting of quarter point elements and the rest of the discontinuity is treated by the XFEM. The actual crack opening in this method is measured by the sum of the crack openings of XFEM and SFEM in transition region. This method retains the strong point of the XFEM so it can avoid remeshing in crack evolution and trace the crack growth by translation or rotation of the overlaid mesh and the update of the nodes to be enriched by step functions. Moreover, the quadrature of the Galerkin weak form becomes simpler. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed method.

  • PDF

Structural Intensity Analysis of Local Ship Structures Using Finite Element Method (유한요소법을 이용한 선체 국부 구조물의 진동인텐시티 해석)

  • Dong-Hwan Lee;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.62-73
    • /
    • 2001
  • The interest in evaluation of structural intensity arises for practical reasons, because net energy flow distribution offers information of energy transmission path, positions of sources, and sinks of vibration energy. In this paper, structural intensity analysis of local ship structures using finite element method(FEM) is carried out. The purpose of this analysis is to evaluate the relative accuracy according to mesh fineness. The structural intensity of unstiffened and stiffened plates varying their mesh fineness is analyzed and the results are compared with those obtained by the assumed mode method. As results, the proper mesh size in qualitative/quantitative structural intensity analysis of plate structures is proposed. In addition, the propagation phenomenon of vibration energy is investigated for the thickness-varying flat plate, L-type plate, and box-girder structures.

  • PDF

A method of global-local analyses of structures involving local heterogeneities and propagating cracks

  • Kurumatani, Mao;Terada, Kenjiro
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.529-547
    • /
    • 2011
  • This paper presents the global-local finite cover method (GL-FCM) that is capable of analyzing structures involving local heterogeneities and propagating cracks. The suggested method is composed of two techniques. One of them is the FCM, which is one of the PU-based generalized finite element methods, for the analysis of local cohesive crack growth. The mechanical behavior evaluated in local heterogeneous structures by the FCM is transferred to the overall (global) structure by the so-called mortar method. The other is a method of mesh superposition for hierarchical modeling, which enables us to evaluate the average stiffness by the analysis of local heterogeneous structures not subjected to crack propagation. Several numerical experiments are conducted to validate the accuracy of the proposed method. The capability and applicability of the proposed method is demonstrated in an illustrative numerical example, in which we predict the mechanical deterioration of a reinforced concrete (RC) structure, whose local regions are subjected to propagating cracks induced by reinforcement corrosion.

A study on the Second-Harmonic Generation(SBG) Conversion Characteristics of Nd:YAG Laser adopted Differential Superposition Mesh (중첩회로를 적용한 펄스형 Nd:YAG 레이저의 2차 SHG 변환효율에 관한 특성연구)

  • 김휘영;박두열
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.215-218
    • /
    • 2001
  • A pulsed Nd:YAG laser is used widely for materials processing and medical instrument. It's very important to control the laser energy density in those fields using a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this paper, the alternating charge and discharge system was designed to adjust a pulse repetition rate. This system is controlled by microprocessor and allows to frequence an expensive condenser for high frequency to cheap one for low frequency. In addtion, The microcontroller monitors the flow of cooling water, short circuit, and miss firing and so on. We designed Nd:YAG laser firmware with smart microcontroller, and want to explain general matters about the firmware from now.

  • PDF

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF