• Title/Summary/Keyword: Mesoporous ceramic

Search Result 29, Processing Time 0.035 seconds

Preparation of Mesoporous SiCBN Ceramic Templated by Mesoporous Carbon

  • Nghiem, Quoc Dat;Ryoo, Hyang-Im;Kim, Dong-Pyo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.358-361
    • /
    • 2007
  • Well-ordered mesoporous SiCBN ceramics have been successfully synthesized by infiltrating a polymeric precursor, which was prepared from borazine and 2,4,6-trimethyl-2,4,6-trivinylcyclotrisilazane via a hydroboration reaction, into a mesoporous carbon (CMK-3) as a hard template. This was followed by pyrolysis at $1400^{\circ}C$ under nitrogen gas and subsequent oxidative removal of the carbon template without chemical etching. The prepared mesoporous SiCBN ceramic was characterized by a small-angle XRD, TEM, and BET surface area. The resulting mesoporous SiCBN ceramic revealed a BET surface area of $275 m^2g^{-1}$ and a pore volume of $0.8 cm^3 g$ with no crystallization.

The Synthesis and Characterization of Mesoporous Microbead Incorporated with CdSe/ZnS QDs (양자점이 고밀도화된 마이크로 비드의 제조 및 특성)

  • Lee, Ji-Hye;Hyun, Sang-Il;Lee, Jong-Huen;Koo, Eun-Hae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.657-663
    • /
    • 2012
  • The spherical mesoporous silica is synthesized and incorporated with CdSe/ZnS quantum dots(QDs) for preparing micro beads to detect toxic and bio-materials with high sensitivity. The spherical silica beads with the brunauer-emmett-telle(BET) average pore size of 15 nm were prepared with a ratio 1, 3, 5-trimethylbenzen, as a swelling agent, to the block-copolymer template surfactant of over 1 and under vigorous mixing condition. The surface of spherical mesoporous silica is modified using octadecylsilane for incorporating QDs. Based on photoluminescence(PL) spectra, the relative brightness of mesoporous silica beads incorporated with 10 nM of QDs is 79,000 times brighter than that of Rodamine 6 G.

Preparation of AlN Powder Using Mesoporous Alumina and Its Characterization (메조포러스 알루미나를 이용한 AlN 분말 제조 및 특성분석)

  • Kim, Eun Bee;Lee, Yoon Joo;Shin, Dong Geun;Kwon, Woo Teck;Kim, Soo Ryong;Kang, Mi Sook;Kim, Young Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.544-548
    • /
    • 2014
  • Aluminum nitride was synthesized using a carbothermal method from mesoporous alumina having a high surface area (> $1,000m^2/g$) as an aluminum source and CNTs (carbon nano tubes) as a carbon source. In this case the mesoporous alumina was used as the starting material instead of ${\alpha}-Al_2O_3$ with the expectation that the mesopores in mesoporous alumina act as channels for N2 gas and elimination of CO generated as by-product. It is also expected that the synthetic temperature should be lower compared to the use of ${\alpha}-Al_2O_3$ as a starting material due to its high surface area. The crystallinity of the produced aluminum nitride was studied by XRD and FT-IR, and the microstructure was investigated by FE-SEM. Also the purity of the aluminum nitride was analyzed through N/O determinator and ICP analysis.

Fabrication and Characterization of Macro/Mesoporous SiC Ceramics from SiO2 Templates (실리카 주형을 이용한 메크로/메조다공성 탄화규소 세라믹의 제조와 비교특성)

  • ;Hao Wang
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.528-533
    • /
    • 2004
  • Macroporous SiC with pore size 84∼658 nm and mesoporous SiC with pore size 15∼65 nm were respectively prepared by infiltrating low viscosity preceramic polymer solutions into the various sacrificial templates obtained by natural sedimentation or centrifuge of 20∼700 nm silica sol, which were subsequently etched off with HF after pyrolysis at 1000∼140$0^{\circ}C$ in an argon atmosphere. Three-dimensionally long range ordered macroporous SiC ceramics derived from polymethylsilane (PMS) showed surface area 584.64$m^2$g$^{-1}$ when prepared with 112nm silica sol and at 140$0^{\circ}C$, whereas mesoporous SiC from polycarbosilane (PCS) exhibited the highest surface area 619.4 $m^2$g$^{-1}$ with random pore array when prepared with 20-30 nm silica sol and at 100$0^{\circ}C$. Finally, tile pore characteristics of porous SiC on the types of silica sol, polymers and pyrolytic conditions were interpreted with the analytical results of SEM, TEM, and BET instruments.

A Novel Flowerlike Nanostructured CeO2 for Sustainable Energies

  • Li, Hong;Chen, Liquan
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.66-70
    • /
    • 2010
  • This article presents a brief review of our recent studies on flowerlike nanostructured $CeO_2$ materials. These materials are monodispersed microspheres with peony appearance, open mesoporous structure, large specific surface area and nano-crystalline feature. The applications of this type of novel material to SOFC, ethanol steam reforming and CO oxidation are introduced.

Influence of Amphoteric Behaviour of Oxide Materials on the Selectivity of Micro and Mesoporous Ceramic Membranes

  • L. Cot;A. Larbot
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.1028-1031
    • /
    • 1997
  • Electrostatic interaction is a very important parameter for the membrane selectivity. In this work, the electrical double layer establishment on the surface of metal oxide material from the Stern-Grahame model has been described. Then, some examples of rejection using micro and mesoporous ceramic membranes have been given. A correlation between the charges of the membrane material and the species to be filtered has been precised. Two rejection mechanisms have to be taken into account the size of the solutes and the electrostatic interactions.

Preparation and Characterization of Mesoporous Ceramic Materials (메조기공 세라믹 소재의 형성과 특성 분석)

  • Ha, Tae-Jung;Park, Hyung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.593-601
    • /
    • 2012
  • Ordered mesoporous oxide films have been focused because of their low density, high interior specific surface area, and high thermal insulation. Specially, the ordered mesoporous oxide films prepared by self-assembly has many advantages due to easy process and high reproducibility. In this work, ordered mesoporous $SiO_2$, $Al_2O_3$, and $TiO_2$ films were synthesized by control of composition and processing parameter. Also, their structural, thermal, and mechanical properties were characterized variously. In conclusion, ordered mesoporous oxides will be one of core materials in new technology due to their excellent and unique properties.

Preparation of Self-standing Mesoporous Bioactive Glass/biodegradable Polymer Composite thin Films using Water Casting Method (수면전개법을 이용한 메조다공성 생체활성유리-생분해성 고분자 복합체 자립박막의 제조)

  • Yun, Hui-Suk;Yoon, Jun-Jin;Park, Eui-Kyun;Kim, Seung-Eon;Hyun, Yong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.631-637
    • /
    • 2008
  • Self-standing mesoporous bioactive glass/poly($\varepsilon$-caprolactone) composite thin films with good molding capability, bioactivity, and biocompatibility in vitro, which may find potential applications in tissue engineering and drug storage, were prepared using a combination of the sol-gel, polymer templating, and water casting method. The thickness of self-standing films was affected by the difference of dielectric constant between distilled water and organic solvent.

Synthesis of an Ordered Porous SiCN Ceramic Film by Self-Assembly of Inorganic-Organic Diblock Copolymer

  • Nghiem Quoc Dat;Kim Dong-Pyo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.296-296
    • /
    • 2006
  • Highly temperature stable mesoporous materials have excellent properties and potential applications. Here we show a novel poly(vinyl)silazane-block-polystyrene diblock copolymer, which was synthesized by controlled/living free radical polymerization with reversible addition fragmentation chain transfer (RAFT) route. The obtained diblock copolymer occurs the phaseseparation on the nanoscale to form ordered nanostructure, which is converted to mesoprorous ceramic after heating at 800oC. This route demonstrates the preparation of highly temperature stable mesoporous silicon carbon nitrides (SiCN) ceramic film directed from highly cross-linking poly(vinyl)silazane blocks with high ceramic yield, which is different from previous pathway.

  • PDF