• Title/Summary/Keyword: Mesoscale atmospheric phenomena

Search Result 6, Processing Time 0.02 seconds

The Impact of Spatio-temporal Resolution of GEO-KOMPSAT-2A Rapid Scan Imagery on the Retrieval of Mesoscale Atmospheric Motion Vector (천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석)

  • Kim, Hee-Ae;Chung, Sung-Rae;Oh, Soo Min;Lee, Byung-Il;Shin, In-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.885-901
    • /
    • 2021
  • This paper illustratesthe impact of the temporal gap between satellite images and targetsize in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a targetsize between 8×8 and 40×40. Resultsshow the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the targetsize are closely related to the spatial and temporalscale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVsrequires considering them. This paper recommendsthat the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

Mumerical Studies to Determine Sites of wind Energy Conversion System (수식모델에 의한 풍력시스템 위치선정에 관한 연구)

  • Shin, Dong-Ryul;Lee, In-Y.
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 1982
  • A planetary boundary layer model has been modified to study the feasibility of siting the wind energy conversion systems over Jejudo island. Our objective is to demonstrate a numerical model that is simple enough to be economical in terms of computational cost and contains most of the mesoscale processes occurring in the planetary boundary layer at the same time. Simulated fields of atmospheric parameters are compared favorably with available climatological data and interpreted in terms of physical phenomena occurring.

  • PDF

Numerical Study on the Changes in Microscopic Meteorological Elements due to Land Use Variations in the Nakdong River Basin (낙동강 하천 토지이용 변화에 따른 미세규모 기상 요소의 변동에 관한 수치 연구)

  • Kim, Eun-Ji;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1597-1611
    • /
    • 2016
  • A numerical assessment using mesoscale-CFD (computational fluid dynamics) coupled A2C (atmosphere to CFD) model was carried out to analyze the variation of microscopic air flow pattern due to the construction of the Chilgok barrage in the Nakdong River. Scenarios with air flow patterns were classified into pre- and post-construction. The increased width of the river due to the construction of the Chilgok barrage induced obvious changes in moisture and the thermal environment around the river. However, air temperature variation was restricted within an area along the windward side in the numerical assessment. The impact of barrage construction on air temperature tends to be stronger during the nighttime than the daytime. It also stronger during the winter than the summer. In the simulation, the convergence of mesoscale wind is more pronounced after barrage construction than before. This is caused by the change of heat flux pattern induced by the widening of the river. Although this work is a case study with restricted atmospheric stability conditions that has several limitations in the numerical simulations, the impacts of the land-use changes brought about by the construction of the barrage in the river acceptable.

Analyzing the Characteristics of Atmospheric Stability from Radiosonde Observations in the Southern Coastal Region of the Korean Peninsula during the Summer of 2019 (라디오존데 고층관측자료를 활용한 한반도 남해안 지역의 2019년도 여름철 대기 안정도 특성 분석)

  • Shin, Seungsook;Hwang, Sung-Eun;Lee, Young-Tae;Kim, Byung-Taek;Kim, Ki-Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.496-503
    • /
    • 2021
  • By analyzing the characteristics of atmospheric stability in the southern coastal region of the Korean Peninsula in the summer of 2019, a quantitative threshold of atmospheric instability indices was derived for predicting rainfall events in the Korean Peninsula. For this analysis, we used data from all of the 243 radiosonde intensive observations recorded at the Boseong Standard Weather Observatory (BSWO) in the summer of 2019. To analyze the atmospheric stability of rain events and mesoscale atmospheric phenomena, convective available potential energy (CAPE) and storm relative helicity (SRH) were calculated and compared. In particular, SRH analysis was divided into four levels based on the depth of the atmosphere (0-1, 0-3, 0-6, and 0-10 km). The rain events were categorized into three cases: that of no rain, that of 12 h before the rain, and that of rain. The results showed that SRH was more suitable than CAPE for the prediction of the rainfall events in Boseong during the summer of 2019, and that the rainfall events occurred when the 0-6 km SRH was 150 m2 s-2 or more, which is the same standard as that for a possible weak tornado. In addition, the results of the atmospheric stability analysis during the Changma, which is the rainy period in the Korean Peninsula during the summer and typhoon seasons, showed that the 0-6 km SRH was larger than the mean value of the 0-10 km SRH, whereas SRH generally increased as the depth of the atmosphere increased. Therefore, it can be said that the 0-6 km SRH was more effective in determining the rainfall events caused by typhoons in Boseong in the summer of 2019.

Atmospheric Studies Using a Three-Dimensional Eulerian Model in Kyongin Region (3차원 오일러리안 확산모델을 이용한 경인산단권역의 대기거동 해석)

  • Song, Dong-Woong
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • The numerical modeling and comparison with observations are performed to find out the detailed structure of meteorology and the characteristic of related dispersion phenomena of the non-reactive air pollutant at Kyoungin region, South Korea, where several industrial complex including Siwha, Banwol and Namdong is located. MM5 (Fifth Generation NCAR/Penn State Mesoscale Model), 3-D Land/sea breeze model and 3-D diagnostic meteorological model have been utilized for the meteorological simulation for September, 2002 with each different spatial resolution, while 3-D Eulerian air dispersion model for the air quality study. We can see the simulated wind field shows the very local circulation quitely well compared with in-site observations in shoreline area with complex terrains, at which the circulation of Land/sea breeze has developed and merged with the mountain and valley breeze eventually. Also it is shown in the result of the dispersion model that the diurnal variation and absolute value of daily mean $SO_2$ concentrations have good agreement with observations, even though the instant concentration of $SO_2$ simulated overestimates around 1.5 times rather than that of observation due to neglecting the deposition process and roughly estimated emission rate. This results may indicate that it is important for the air quality study at shoreline region with the complex terrain to implement the high resolution meteorological model which is able to handle with the complicate local circulation.

The Generation of Westerly Waves by Sobaek Mountains (소백산맥에 의한 서풍 파동 발생)

  • Kim, Jin wook;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.24-34
    • /
    • 2017
  • The westerly waves generation is described in the advanced earth science textbook used at high school as follows: as westerly wind approaches and blows over large mountains, the air flow shows wave motions in downwind side, which can be explained by the conservation of potential vorticity. However, there has been no case study showing the phenomena of the mesoscale westerly waves with observational data in the area of small mountains in Korea. And thus the wind speed and time persistency of westerly winds along with the width and length of mountains have never been studied to explain the generation of the westerly waves. As a first step, we assured the westerly waves generated in the downwind side of Sobaek mountains based on surface station wind data nearby. Furthermore, the critical or minimum wind velocity of the westerly wind over Sobaek mountains to generate the downwind wave were derived and calcuated tobe about $0.6m\;s^{-1}$ for Sobaek mountains, which means that the westerly waves could be generated in most cases of westerly blowing over the mountains. Using surface station data and 4-dimensional assimilation data of RDAPS (Regional Data Assimilation and Prediction System) provided by Korea Meteorological Agency, we also analyzed cases of westerly waves occurrence and life cycle in the downwind side of Sobaek mountains for a year of 2014. The westerly waves occurred in meso-${\beta}$ or -${\gamma}$ scales. The westerly waves generated by the mountains disappeared gradually with wind speed decreasing. The occurrence frequency of the vorticity with meso-${\beta}$ scale got to be higher when the stronger westerly wind blew. When we extended the spatial range of the analysis, phenomena of westerly waves were also observed in the downwind side of Yensan mountains in Northeastern China. Our current work will be a study material to help students understand the atmospheric phenomena perturbed by mountains.