• 제목/요약/키워드: Metaheuristic algorithm

검색결과 143건 처리시간 0.026초

Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm

  • Yazdani, Maziar;Jolai, Fariborz
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.24-36
    • /
    • 2016
  • During the past decade, solving complex optimization problems with metaheuristic algorithms has received considerable attention among practitioners and researchers. Hence, many metaheuristic algorithms have been developed over the last years. Many of these algorithms are inspired by various phenomena of nature. In this paper, a new population based algorithm, the Lion Optimization Algorithm (LOA), is introduced. Special lifestyle of lions and their cooperation characteristics has been the basic motivation for development of this optimization algorithm. Some benchmark problems are selected from the literature, and the solution of the proposed algorithm has been compared with those of some well-known and newest meta-heuristics for these problems. The obtained results confirm the high performance of the proposed algorithm in comparison to the other algorithms used in this paper.

구조물 최적설계를 위한 메타휴리스틱 알고리즘의 비교 연구 (An Comparative Study of Metaheuristic Algorithms for the Optimum Design of Structures)

  • 류연선;조현만
    • 수산해양교육연구
    • /
    • 제29권2호
    • /
    • pp.544-551
    • /
    • 2017
  • Metaheuristic algorithms are efficient techniques for a class of mathematical optimization problems without having to deeply adapt to the inherent nature of each problem. They are very useful for structural design optimization in which the cost of gradient computation can be very expensive. Among them, the characteristics of simulated annealing and genetic algorithms are briefly discussed. In Metropolis genetic algorithm, favorable features of Metropolis criterion in simulated annealing are incorporated in the reproduction operations of simple genetic algorithm. Numerical examples of structural design optimization are presented. The example structures are truss, breakwater and steel box girder bridge. From the theoretical evaluation and numerical experience, performance and applicability of metaheuristic algorithms for structural design optimization are discussed.

세부공정으로 구성된 LCD 모듈 라인의 다중스테이지 메타휴리스틱 스케줄링 알고리즘 연구 (A Multistage Metaheuristic Scheduling Algorithm in LCD Module Lines Composed of Processes)

  • 서정대
    • 대한산업공학회지
    • /
    • 제38권4호
    • /
    • pp.262-275
    • /
    • 2012
  • This paper develops a multistage scheduling algorithm for the module operation of the LCD(Liquid Crystal Display) production systems and tests the efficiency of the proposed algorithm. The module operation is a multistage form composed of multiple sub operations of processes, and each stage is consists of multiple lines with the same kinds of machines. This paper presents a mathematical modeling reflecting the constraints of the LCD module operation and develops a multistage scheduling algorithm based on tabu search metaheuristic approach. For this purpose, an production order is assigned to a line of the sub operations and a sequence of the assigned order is rearranged to draw an efficient schedule. Simulation experiments test performance measures and show the efficiency of the proposed algorithm.

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

Mine 알고리즘 : 인간의 행동을 모방한 메타휴리스틱 (Mine Algorithm : A Metaheuristic Imitating The Action of The Human Being)

  • 고성범
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.411-426
    • /
    • 2009
  • 대부분의 메타휴리스틱들은 동물의 행동을 모방한 것이다. 본 논문에서는 Mine 알고리즘을 제안한다. Mine 알고리즘(Mine Algorithm)은 인간의 행동을 모방한 메타휴리스틱이다. 탐색의 관점에서 인간의 노하우와 휴리스틱이 가장 잘 녹아 있는 업종은 광산업(mining industry)이다. Mine 알고리즘에서는 광산 업무에 초점을 맞추어서 인간의 행동패턴을 형식화한다. Mine 알고리즘은 다양한 탐색기법을 유연하게 구사하며, 그 때문에 광범위한 문제에서 고른 성능을 보인다. 즉, 범용성이 양호하다. 우리는 기존 메타휴리스틱들과의 비교 실험을 통하여 Mine 알고리즘의 개선된 범용성을 보인다.

Metaheuristic-hybridized multilayer perceptron in slope stability analysis

  • Ye, Xinyu;Moayedi, Hossein;Khari, Mahdy;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.263-275
    • /
    • 2020
  • This research is dedicated to slope stability analysis using novel intelligent models. By coupling a neural network with spotted hyena optimizer (SHO), salp swarm algorithm (SSA), shuffled frog leaping algorithm (SFLA), and league champion optimization algorithm (LCA) metaheuristic algorithms, four predictive ensembles are built for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The data used to develop the ensembles are provided from a vast finite element analysis. After creating the proposed models, it was observed that the best population size for the SHO, SSA, SFLA, and LCA is 300, 400, 400, and 200, respectively. Evaluation of the results showed that the combination of metaheuristic and neural approaches offers capable tools for estimating the FOS. However, the SSA (error = 0.3532 and correlation = 0.9937), emerged as the most reliable optimizer, followed by LCA (error = 0.5430 and correlation = 0.9843), SFLA (error = 0.8176 and correlation = 0.9645), and SHO (error = 2.0887 and correlation = 0.8614). Due to the high accuracy of the SSA in properly adjusting the computational parameters of the neural network, the corresponding FOS predictive formula is presented to be used as a fast yet accurate substitution for traditional methods.

Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm

  • Grzywinski, Maksym;Selejdak, Jacek;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.747-753
    • /
    • 2019
  • Metaheuristic algorithm is used to solve the weight minimization problem of truss structures considering shape, and sizing design variables. The cross-sectional areas of the line element in trusses are the design variables for size optimization and the changeable joint coordinates are the shape optimization used in this study. The design of plane and spatial truss structures are optimized by metaheuristic technique named Teaching-Learning-Based Optimization (TLBO). Finite element analyses of structures and optimization process are carried out by the computer program visually developed by the authors coded in MATLAB. The four benchmark problems (trusses 2D ten-bar, 3D thirty-seven-bar, 3D seventy-two-bar and 2D two-hundred-bar) taken from literature are optimized and the optimal solution compared the results given by previous studies.

환경성을 고려한 메타 휴리스틱 알고리즘 기반의 그린 Product Family 재설계 방법론 (A Metaheuristic Algorithm based Redesign Methodology for Green Product Family Considering Environmental Performance)

  • 서광규
    • 디지털융복합연구
    • /
    • 제12권5호
    • /
    • pp.125-130
    • /
    • 2014
  • 오늘날의 글로벌 시장에서의 경쟁은 많은 회사들이 시장에서 충분한 다양성을 가진 product family를 개발하도록 하고 있다. Product family를 설계할 때 중요한 이슈 중에 하나는 제품의 공통성과 차별성간의 절충점을 찾아내는 것이다, 이와 동시에 Product family를 설계할 때 리드타임을 단축시키고, 품질을 향상시키며 비용을 절감하는 것뿐만 아니라 제품의 환경 성능을 고려하는 것도 필요하다. 본 연구에서는 환경성을 고려한 메타 휴리스틱 알고리즘 기반의 그린 Product Family 재설계 방법론을 제안한다. 제안하는 방법은 그린 product family의 설계를 위해 메타휴리스틱 알고리즘으로써 유전자 알고리즘과 green product family index (GPFI)를 이용한다. 추가적으로 product family 레벨과 부품 레벨의 product family 재설계 추천방안도 제시하였다. 본 연구에서는 테이블 램프 product family를 대상으로 제안한 방법의 효율성과 타당성을 검증하였다.

Optimum cost design of RC columns using artificial bee colony algorithm

  • Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.643-654
    • /
    • 2013
  • Optimum cost design of columns subjected to axial force and uniaxial bending moment is presented in this paper. In the formulation of the optimum design problem, the height and width of the column, diameter and number of reinforcement bars are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the column consisting the cost of concrete, steel, and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The Artificial Bee Colony Algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Optimum design of a reinforced concrete beam using artificial bee colony algorithm

  • Ozturk, H.T.;Durmus, Ay.;Durmus, Ah.
    • Computers and Concrete
    • /
    • 제10권3호
    • /
    • pp.295-306
    • /
    • 2012
  • Optimum cost design of a simply supported reinforced concrete beam is presented in this paper. In the formulation of the optimum design problem, the height and width of the beam, and reinforcement steel area are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the beam consisting the cost of concrete, steel and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The artificial bee colony algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.