• Title/Summary/Keyword: Metal

Search Result 26,575, Processing Time 0.056 seconds

Metal artifact SUV estimation by using attenuation correction image and non attenuation correction image in PET-CT (PET-CT에서 감쇠보정 영상과 비감쇠보정 영상을 통한 Metal Artifact 보정에 대한 고찰)

  • Kim, June;Kim, Jae-II;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • Purpose Because of many advantages, PET-CT Scanners generally use CT Data for attenuation correction. By using CT based attenuation correction, we can get anatomical information, reduce scan time and make more accurate correction of attenuation. However in case metal artifact occurred during CT scan, CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET images. Therefore this study infers true SUV of metal artifact region from attenuation corrected image count -to- non attenuation corrected image count ratio. Materials and Methods Micro phantom inserted $^{18}F-FDG$ 4mCi was used for phantom test and Biograph mCT S(40) is used for medical test equipment. We generated metal artifact in micro phantom by using metal. Then we acquired both metal artifact region of correction factor and non metal artifact region of correction factor by using attenuation correction image count -to- non attenuation correction image count ratio. In case of clinical image, we reconstructed both attenuation corrected images and non attenuation corrected images of 10 normal patient($66{\pm}15age$) who examined PET-CT scan in SNUH. After that, we standardize several organs of correction factor by using attenuation corrected image count -to- non attenuation corrected count ratio. Then we figured out metal artifact region of correction factor by using metal artifact region of attenuation corrected image count -to- non attenuation corrected count ratio And we compared standard organs correction factor with metal artifact region correction factor. Results according to phantom test results, metal artifact induce overestimation of correction factor so metal artifact region of correction factors are 12% bigger than the non metal artifact region of correction factors. in case of clinical test, correction factor of organs with high CT number(>1000) is $8{\pm}0.5%$, correction factor of organs with CT number similar to soft tissue is $6{\pm}2%$ and correction factor of organs with low CT number(-100>) is $3{\pm}1%$. Also metal artifact correction factors are 20% bigger than soft tissue correction factors which didn't happened metal artifact. Conclusion metal artifact lead to overestimation of attenuation coefficient. because of that, SUV of metal artifact region is overestimated. Thus for more accurate quantitative evaluation, using attenuation correction image count -to-non attenuation correction image count ratio is one of the methods to reduce metal artifact affect.

  • PDF

Metal Area Segmentation in X-ray CT Images Using the RNA (Relevant Neighbor Ar ea) Principle

  • Kim, Youngshin;Kwon, Hyukjoon;Kim, Joongkyu;Yi, Juneho
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1442-1448
    • /
    • 2012
  • The problem of Metal Area Segmentation (MAS) in X-ray CT images is a very hard task because of metal artifacts. This research features a practical yet effective method for MAS in X-ray CT images that exploits both projection image and reconstructed image spaces. We employ the Relevant Neighbor Area (RNA) idea [1] originally developed for projection image inpainting in order to create a novel feature in the projection image space that distinctively represents metal and near-metal pixels with opposite signs. In the reconstructed result of the feature image, application of a simple thresholding technique provides accurate segmentation of metal areas due to nice separation of near-metal areas from metal areas in its histogram.

Joining of Ceramic and Metal using Active Metal Brazing (활성금속 브레이징을 사용한 세라믹과 금속의 접합)

  • Kee, Se-Ho;Xu, Zengfeng;Jung, Jae-Pil;Kim, Won-Joong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Active brazing of ceramic to metal is reviewed in this paper. As one of the key aspect in joint techniques, active brazing has been developed to simplify the manufacturing procedure of brazed joints between ceramic and metal. The active filler metal includes Ag-Cu-Ti series, Cu-Ti series, Co-Ti series and so on. The active filler metal which supplies the chemical bonds between ceramic and metal, enhances the wetting of filler metal on ceramic surface and eliminates the need for metallization treatments. The residual stress caused by difference of coefficient of thermal expansion between ceramic and metal, holds a direct influence on the bonding strength and even results in a fracture. Good joints of ceramic to metal promote the miniaturization and simplicity of electronic components with multifunction.

A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids (수용성 절삭유의 부패 특성과 Copper Alloy Metal Fiber의 부패 방지 장치에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • Copper alloy metal fiber was incorporated into the conventional water-soluble metal working fluids to increase the antimicrobial activity. Fluid treated by copper alloy metal fiber is shown that bacteria is disappeared whereas that untreated metal fiber is increased bacteria as increasing the life time. When the electrochemical potential of Cu/Zn ion is -268mV, radicals with molecular oxygen are easily made. Especially, hydroperoxide radical shows strong toxicity to the strains, leading to the conformational change of plasma membrane. As a result antimicrobial activity of copper alloy metal fiber in metal working fluid is superior to that of copper fiber.

Reserch and development of metal halide lamp for LCD projector back light (LCD PROJECTOR BACK LIGHT용 METAL HALIDE LAMP의 연구 및 개발)

  • 박창식;정의선;이승수
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.39-46
    • /
    • 1995
  • Metal halide pamp for LCD projector back light is high technologlcal product with its consumption increasing by 30% a year according to LCD merchandise and we are whollydepending on imprtation. At this time exper iment. we achleved those results as below. 1. Reallzation of domestic production of 150W metal halide lamp for LCD progector back light and electrical ballatst. 2. Possession of self-designing and manufacturing technology of submlnlature metal halide lamp. 3. Possession of deslgning technology of electrlcal ballast for metal hallde lamp.

  • PDF

In situ monitoring-based feature extraction for metal additive manufacturing products warpage prediction

  • Lee, Jungeon;Baek, Adrian M. Chung;Kim, Namhun;Kwon, Daeil
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.767-775
    • /
    • 2022
  • Metal additive manufacturing (AM), also known as metal three-dimensional (3D) printing, produces 3D metal products by repeatedly adding and solidifying metal materials layer by layer. During the metal AM process, products experience repeated local melting and cooling using a laser or electron beam, resulting in product defects, such as warpage, cracks, and internal pores. Such defects adversely affect the final product. This paper proposes the in situ monitoring-based warpage prediction of metal AM products with experimental feature extraction. The temperature profile of the metal AM substrate during the process was experimentally collected. Time-domain features were extracted from the temperature profile, and their relationships to the warpage mechanism were investigated. The standard deviation showed a significant linear correlation with warpage. The findings from this study are expected to contribute to optimizing process parameters for metal AM warpage reduction.

A STUDY ON FRACTURE STRENGTH OF COLLARLESS METAL CERAMIC CROWN WITH DIFFERENT METAL COPING DESIGN (금속코핑 설계에 따른 Collarless Metal Ceramic Crown의 파절강도에 관한 연구)

  • Yun, Jong-Wook;Yang, Jae-Ho;Chang, Ik-Tae;Lee, Sun-Hyung;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.454-464
    • /
    • 1999
  • The metal ceramic crown is currently the most popular complete veneer restoration in dentistry, but in many cases, the metal cervical collar at the facial margin is unesthetic and unacceptable. Facial porcelain margin has been used in place of it. But this dose not solve the problems, such as dark gingival discoloration and cervical opaque reflection of porcelain veneer. Recently, metal copings which were designed to terminate its labio-cervical end on the axial walls coronal to the shoulder have been clinically used to solve the esthetic problem of metal ceramic crown. But in this design, porcelain veneer of labio-cervical area which is not supported by metal may not be able to resist the stress during cementation and mastication. The purpose of this study was to evaluate fracture strength and fractured appearance of crowns according to different coping designs. A resin maxillary left central incisor analogue was prepared for a metal ceramic crown, and metal dies were made with duplication mold. Metal copings were made and assigned to one of four groups based on facial framework designs: group 1, coping with 0.5mm metal collar; group 2, metal extended to the shoulder; group 3, metal extended to 1mm coronal tn the shoulder: group 4, metal extended to 2mm coronal to the shoulder. Copings and crowns were adjusted to be same size and thickness, and cemented to metal dies with zinc phosphate cement by finger pressure. Fracture strength was measured with Instron Universal Testing Machine. Metal dies were anchored in Three-way-vice at 3mm below finish line and at $130^{\circ}$ inclined to the long axis of the crown. Load was directed lingually at 2mm below midincisal edge. Load value at initial crack and at catastrophic fracture was recorded. The results obtained were as follows : 1. Fracture strength values at initial crack were higher in groups 1, 2 than in groups 3, 4 but this difference was not statistically significant(P<0.05). 2. Conventional metal collared crown had greater catastrophic fracture strength than any other collarless crowns. 3. The greater the labial metal coping reduction, the lower the catastrophic fracture strength of crowns but when more than 1mm of labial metal reduction was done, the difference in strengths was not statistically significant(p<0.05). 4. The strongest collarless coping design was group 2.

  • PDF

Development of Hazardous Objects Detection Technology based on Metal/Non-Metal Detector (금속/비금속 복합센서기반 위험물 탐지기술 개발)

  • Yoo, Dong-Su;Kim, Seok-Hwan;Lee, Jeong-Yeob;Lee, Seok-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.120-125
    • /
    • 2014
  • Conventional handheld metal detectors use a single induction coil to detect the metallic parts of explosive objects, and the detector generates an acoustic signal from its magnetic response to a metallic object so that an operator can confirm the existence of mines. Though metal detectors have very useful detection mechanisms to find mines, it is easy to cause a high false alarm ratio due to the detection of non-explosive metallic items such as cans, nails and other pieces of metal, etc. Also, because of the physical characteristic of a metal detector it is hard to detect non-metallic objects such as mines made of wood or plastic. Furthermore, the operator must move it to the left and right slowly and repeatedly to attain enough sensor signals to confirm the existence of mines using only a monotonous acoustic signal. To resolve the disadvantages of handheld detectors, many new approaches have been attempted, such as an arrayed detector and a visualization algorithm based on metal/non-metal sensor. In this paper, we introduce a visualization algorithm with a metal/non-metal complex sensor, an arrayed metal/non-metal sensor and the their testing and evaluation.

Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal (Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조)

  • 정창주;장복기;문종하;강경인
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF

Conducting Metal Oxide Interdigitated Electrodes for Semiconducting Metal Oxide Gas Sensors

  • Shim, Young-Seok;Moon, Hi-Gyu;Kim, Do-Hong;Jang, Ho-Won;Yoon, Young-Soo;Yoon, Soek-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.65-65
    • /
    • 2011
  • We report the application of conducting metal oxide electrodes for semiconducting metal oxide gas sensors. Pt interdigitated electrodes have been commonly used for metal oxide gas sensor because of the low resistivity, excellent thermal and chemical stability of Pt. However, the high cost of Pt is an obstacle for the wide use of metal oxide gas sensors compared with its counterpart electrochemical gas sensors. Meanwhile, relatively low-cost conducting metal oxides are widely being used for light-emitting diodes, flat panel displays, solar cell and etc. In this work, we have fabricated $WO_3$ and $SnO_2$ thin film gas sensors using interdigitated electrodes of conducting metal oxides. Thin film gas sensors based on conducting metal oxides exhibited superior gas sensing properties than those using Pt interdigitated electrodes. The result was attributed to the low contact resistance between the conducting metal oxide and the sensing material. Consequently, we demonstrated the feasibility of conducting metal oxide interdigitated electrodes for novel gas sensors.

  • PDF