• Title/Summary/Keyword: Metallic Patterns

Search Result 119, Processing Time 0.028 seconds

Fabrication of metallic nano-stamper to replicate nanoscale patterns (나노패턴 성형을 위한 금속 나노 스탬퍼 제작)

  • 김영규;이동철;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.481-484
    • /
    • 2003
  • In this study, we fabricated the master metallic nano-stamper with nano pillar patterns to apply replication processes which is adequate for mass production. Master nano patterns with various hole diameters between 300 nm and 1000 nm was fabricated by e-beam lithography. After the seed layer was deposited on the master nano patterns using e-beam evaporation, the nickel was electroformed. In each step, the shape and surface roughness of their patterns were analyzed using SEM and AFM.

  • PDF

The Influence of the Asian Dust on the Metallic Composition of Fine and Coarse Particle Fractions (황사와 비황사기간의 중금속 농도분포 특성: 2001년 황사기간에 대한 비교연구)

  • 최규훈;김기현;강창희;이진홍
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.45-56
    • /
    • 2003
  • In this study the distribution patterns of the metallic components were analyzed both before and after the Asian Dust (AD) events at 2001 by comparing the chemical composition of metallic components in terms of various statistical methods. According to the AD/NAD concentration ratio of metallic components, the main components of crustal soils were exhibiting the values above 1.0; but opposite results were seen dominantly for hazardous metallic components. Examination of fine-to-coarse (F/C) ratios of metallic components showed higher values for major anthropogenic components including Pb (5.83). Ni (2.61), etc. Comparison of our measurement data with those obtained within and across the Korean peninsula indicated that the metallic distribution patterns of the study area can be distinguished from previous studies. The results of our analysis, when investigated in relation with air mass movement patterns. indicated evidence of the direct influence of AD events and anthropogenic processes.

Fabrication Method Of Micro Embossing Patterned Metallic Thin Foil Using CIP Process and It's Mechanical Property (냉간 등방압 성형공정을 이용한 마이크로 엠보싱 패턴 성형 및 기계적 물성 측정)

  • Lee, H.J.;Lee, N.K.;Lee, G.A.;Lee, H.W.;Choi, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.243-246
    • /
    • 2006
  • In this paper, Experimental results on the measurement of mechanical properties of fine patterns in the MEMS structure are described. The mechanical properties of embossing patterns on metallic thin foil is measured using the nano indentation system, that is developed by Korea Institute of Industrial Technology(KITECH). These micro embossing patterns are fabricated using CIP(Cold Isostatic Press) process on micro metallic thin foils(Al-1100) that are made by rolling process. These embossing patterned metallic thin foils(Al-1100) are used in the reflecting plate of BLU(Back Light Unit) and electrical/mechanical MEMS components. If these mechanical properties of fine patterns are utilized in a design procedure, the optimal design can be achieved in aspects of reliability as well as economy.

  • PDF

Fabrication of Large Area Stamp with High Aspect Ratio Micro Intaglio Features (고세장비 마이크로 음각 형상을 갖는 대면적 스탬프의 제작)

  • Lee, Byung-Soo;Han, Jeong-Won;Han, Jung-Jin;Lim, Ji-Seok;Yoo, Yeong-Eun;Je, Tae-Jin;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.84-87
    • /
    • 2009
  • This paper describes a novel method for fabricating large area metallic stamp with high aspect ratio micro intaglio features. Micro machined brass master with pillar and larger width groove patterns were electroformed to form inverse structures on the large area metallic stamp. This enabled large area metallic stamp with fine micro high aspect ratio micro intaglio features which were small width groove patterns and quadrilateral hole patterns that cannot be fabricated by direct micro machining process. Fabricated large area metallic stamp with high aspect ratio micro intaglio features was measured and analyzed.

  • PDF

Replication of High Density Patterned Media (고밀도 패턴드 미디어 성형에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

Micro Forming of Metallic Micro-parts and Surface Patterns by Employing Vibrational Load (진동 하중을 이용한 마이크로 부품 및 표면 패턴 성형 기술)

  • Na, Y.S.;Lee, J.H.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.64-67
    • /
    • 2009
  • Vibrational micro-forming of pyramidal shape patterns was conducted for an Al superplastic alloy, Al 5083 and a Zr-based bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. A vibrational micro-forming system was specially designed for generating vibrational load by combining a PZT actuator with a signal generator. Single crystal Si micro dies with wet-etched pyramidal patterns were used as master dies for vibrational micro-forming. The micro-formed pattern height was increasing with increasing the frequency of the vibrational load. In particular, the vibrationally-microformed pattern height was similar or even higher than the statically-microformed pattern height when the load frequency exceeded about 125 kHz. It was also observed that the crystal grains affect the surface quality of the microformed pattern and the distribution of the pattern height in the die cavity array.

  • PDF

The Application of Metallic Thin Film for Tep Electrode of Poly-Si Solar Cell (다결정 실리콘 태양전지의 상부 전극용 금속 박막 적용)

  • 김상수;임동건;심경석;이준신;김흥우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.202-205
    • /
    • 1997
  • We investigated grain boundary effect for terrestrial applications of solar cell\ulcorner with low cost, large area, and high efficiency. Grain boundaries are known as potential barriers and recombination centers for the photo-generated charge carriers, which make it difficult to achieve a high efficiency cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatments, various grid patterns, selective wet etchings for grain boundaries, buried contact metallizations along grain boundaries, and use of metallic thin films. From the various grid patterns we learned that the series resistance of solar cell reduced open circuit voltage and consequently decreased the cell efficiency. This paper describes the effect of various grid patterns and the employment of metallic thin films for a top electrode.

  • PDF

Improvement of Metallic Micro-Structure Precision Employing Two-photon Induced Photoreduction Process (이광자 흡수 광환원 공정을 이용한 마이크로 금속형상 제작의 정밀화에 관한 연구)

  • Son, Yong;Lim, Tae-Woo;Yang, Dong-Yol;Prem, Prabhakaran;Lee, Kwang-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.754-760
    • /
    • 2008
  • A two-photon induced photoreduction process suggests a possibility for fabricating complicated metallic microstructures which can be applied to 3-D micro-circuits and optical devices, etc. The process employs the photoreduction of silver ions in a metallic solution which is composed of metallic salt ($AgNO_3$) and watersoluble polymer ((poly(4-styrenesulfonique acid) 18wt. % in $H_2O$, $(C_8H_8O_3S)_n$)). In this process, the improvement of the resolution and the uniformity of fabricated metallic structures are important issues. To address these problems, continuous forming window (CFW) is obtained from a parametric study on the conditions of laser power and scanning velocity and the direct seed generation (DSG) method is proposed. Silver nano particles are uniformly generated in a metallic solution through the DSG method, which enables the decrease of a laser power to trigger the photoreduction of silver ions as well as the increase of metal contents in a metallic solution. So the two-photon induced photoreduction property of a metallic solution is improved. Through this work, precise silver patterns are fabricated with a minimum line width of 400 nm.