• Title/Summary/Keyword: Meteorological Purpose Aircraft

Search Result 6, Processing Time 0.021 seconds

Study on the Specification and Operation Plan of the Meteorological Purpose Aircraft (기상 전용 항공기 도입 및 운영방안 연구)

  • Han, Kyoung-Keun;Kim, Young-Chul;Park, Soo-Bok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.55-62
    • /
    • 2009
  • The Prime objectives of this study are to identify and analyze possible solutions and select a solution for the specification and operation plan of the meteorological purpose aircraft in Korea. Infrastructure like meteorological purpose aircraft and aircraft operating systems should be set up and their efficient plan must be established to improve meteorological technic in Korea. As a result of the study, we have found that the turboprop engine powered aircraft is the most suitable to initial model for the meteorological purpose aircraft. It was found that the indirect operation method might be the best solution, also. The results of this study may be useful to make decision for selecting specification and operation of the meteorological purpose aircraft.

  • PDF

A Study on the Development of Flight Prediction Model and Rules for Military Aircraft Using Data Mining Techniques (데이터 마이닝 기법을 활용한 군용 항공기 비행 예측모형 및 비행규칙 도출 연구)

  • Yu, Kyoung Yul;Moon, Young Joo;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.177-195
    • /
    • 2022
  • Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.

A Study on the Precursors of Aviation Turbulence via QAR Data Analysis (QAR 데이터 분석을 통한 항공난류 조기 인지 가능성 연구)

  • Kim, In Gyu;Chang, Jo Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.36-42
    • /
    • 2018
  • Although continuous passenger injuries and physical damages are repeated due to the unexpected aviation turbulence encountered during operations, there is still exist the limitation for preventing recurrence of similar events because the lack of real-time information and delay in technological developments regarding various operating conditions and variable weather phenomena. The purpose of this study is to compare and analyze the meteorological data of the aviation turbulence occurred and actual flight data extracted from the Quick Access Recorder(QAR) to provide some precursors that the pilot can identify aviation turbulence early by referring thru the flight instrumentation indications. The case applied for this study was recent event, a scheduled flight from Incheon Airport, Korea to Narita Airport, Japan that suddenly encountered turbulence at an altitude of approximately 14,000 feet during approach. According to the Korea Meteorological Administration(KMA)'s Regional Data Assessment and Prediction System(RDAPS) data, it was observed that the strong amount of vorticity in the rear area of jet stream, which existed near Mount Fuji at that time. The QAR data analysis shows significant changes in the aircraft's parameters such as Pitch and Roll angle, Static Air Temperature(SAT), and wind speed and direction in tens of seconds to minutes before encounter the turbulence. If the accumulate reliability of the data in addition and verification of various parameters with continuous analysis of additional cases, it can be the precursors for the pilot's effective and pre-emptive action and conservative prevention measures against aviation turbulence to reduce subsequent passenger injuries in the aviation operations.

Structural Analysis of Fuselage and Empennage of High Altitude Long Endurance UAV (고고도 장기체공 무인기 동체 및 미익부 구조해석)

  • Kim, Hyun-gi;Kim, Sung Joon;Kim, Sung Chan;Shin, Jeong-Woo;Lee, Seunggyu;Park, Sang-Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.35-43
    • /
    • 2016
  • UAV has been promoted for practical use in the field of civilian and military. Recently, UAV is required high-specification performance such as long-term flight and precision observation. Among these UAVs, High Altitude Long Endurance UAV(HALE UAV) has been developed for the purpose to replace some of the functions of the satellite such as meteorological observation, communications and internet relay while flying a long period in the stratosphere. In order to fly a long period in harsh environment of the stratosphere, aircraft needs high Lift-Drag-Ratio and weight reduction of the structure. This paper performed the structural analysis for fuselage and empennage of HALE UAV. Critical loading conditions for structural analysis are acquired from flight load analysis and finally the results of structural sizing for weight reduction is presented.

Pre-study for Polar Routes Space Radiation Forecast Model Development (극항로 우주방사선 예보 모델 개발을 위한 사전 연구)

  • Hwang, Junga;Shin, Daeyun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • In this study, we summarized the results of "Pre-study for the development of Polar route space radiation forecast model", funded by National Meteorological Satellite Center, Korea Meteorological Administration. We investigated the aviation space weather-related literature and the airline companies's operation manual associated with the space weather. We also identify the strengths and weaknesses of many pre-existing space radiation calculation programs, and find the potential to be improved. Until now, we don's have our own space radiation calculation program, so we need more improved space radiation calculation program which will be developed by ourselves. Currently most space radiation calculation programs cannot reflect temporary variations in the solar activities and the space weather. Here we analyzed the strengths and weaknesses of those programs, which are widely used in typical space radiation calculations. Finally to reflect the real-time space weather effects in the forecast model, we need to develop more precise forecast model. For that purpose, we suggest the following four steps: (1) at first, we have to choose the ground-based radiation dose calculation program, (2) we have to select a proper atmospheric model in aircraft altitude, (3) we combine the selected ground cosmic radiation dose calculation program and the selected atmospheric model, and finally (4)we have to reflect the real time space weather information and space weather forecast into the newly combined model.

A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations (인공위성 원격탐사를 이용한 백두산 화산 감시 연구 리뷰)

  • Hong, Sang-Hoon;Jang, Min-Jung;Jung, Seong-Woo;Park, Seo-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1503-1517
    • /
    • 2018
  • Mt. Baekdu is a stratovolcano located at the border between China and North Korea and is known to have formed through its differentiation stage after the Oligocene epoch in the Cenozoic era. There has been a growing interest in the magma re-activity of Mt. Baekdu volcano since 2010. Several research projects have been conducted by government such as Korea Meteorological Administration and Korea Institute of Geoscience and Mineral Resources. Because, however, the Mt. Baekdu volcano is located far from South Korea, it is quite difficult to collect in-situ observations by terrestrial equipment. Remote sensing is a science to analyze and interpret information without direct physical contact with a target object. Various types of platform such as automobile, unmanned aerial vehicle, aircraft and satellite can be used for carrying a payload. In the past several decades, numerous volcanic studies have been conducted by remotely sensed observations using wide spectrum of wavelength channels in electromagnetic waves. In particular, radar remote sensing has been widely used for volcano monitoring in that microwave channel can gather surface's information without less limitation like day and night or weather condition. Radar interferometric technique which utilized phase information of radar signal enables to estimate surface displacement such as volcano, earthquake, ground subsidence or glacial movement, etc. In 2018, long-term research project for collaborative observation for Mt. Baekdu volcano between Korea and China were selected by Korea government. A volcanic specialized research center has been established by the selected project. The purpose of this paper is to introduce about remote sensing techniques for volcano monitoring and to review selected studies with remote sensing techniques to monitor Mt. Baekdu volcano. The acquisition status of the archived observations of six synthetic aperture radar satellites which are in orbit now was investigated for application of radar interferometry to monitor Mt. Baekdu volcano. We will conduct a time-series analysis using collected synthetic aperture radar images.