• Title/Summary/Keyword: Methane Content

Search Result 248, Processing Time 0.031 seconds

Effect of Inoculum and Carbon Sources Difference on Characteristics of Anaerobic Digestion (접종원 및 탄소원의 차이가 혐기소화 특성에 미치는 영향)

  • Choi, Yong Jun;Ryu, Jeong Won;Lee, Sang Rak
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.5
    • /
    • pp.474-481
    • /
    • 2017
  • This study was conducted to investigate the effects of inoculum and carbon sources on anaerobic digestion characteristics. The treatments were combinations of inoculum (digestate of cattle manure and rumen fluid) with carbon sources (starch, cellulose, and xylan). Anaerobic digestion was performed in triplicate at $37^{\circ}C$ for 18 days at 100 rpm. Sampling was performed at 0, 1, 2, 3, 4, 5, 7, 9, 12, 15, and 18 days to measure pH, ammonia-N, volatile solids reduction, the cumulative methane content, and the cumulative methane production. There was a significant difference in methane content depending on the carbon source and there was a significant difference in pH, ammonia-N, methane production, and methane content depending on the inoculum (P < 0.05). The results of methane production were higher in the digestate of cattle manure treatment than in the rumen fluid treatment (P < 0.05). In this study, different digestive patterns depending on the type of carbon source could be used as basic research data to set the hydraulic residence time of anaerobic digestion facilities. In addition, the use of ruminal fluid as an inoculum may help accelerate the hydrolysis and acid production steps.

Effect of food waste properties on methane production (음식물쓰레기의 특성이 메탄생성량에 미치는 영향분석)

  • Lee, Soo Gwan;Choi, Hong Lim;Lee, Joon Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.11-22
    • /
    • 2014
  • The buffer capacity of food waste lowers during the collecting and transportation period. Food waste usually shows deficiency of micro nutrients especially molybdenum(Mo) and cobalt(Co). Therefore, food waste can be considered as a good mixture of livestock waste to enhance methane production. The objective of this study was to investigate the correlation between properties of substrates (local food waste and livestock manure) and methane yields for successive anaerobic fermentation process and its stable management. Food wastes were taken at an intermediate storage or treatment system provided by eight local authorities (Gangnam, Gangdong, Gwanak, Guro, Dongjak, Songpa, Yeongdeungpo, and Younsan) in Seoul. The solid content and potential methane yield of food wastes were average of 16% and $446.6STP-m{\ell}/g-VS$ (range from 334.8 to $567.5STP-m{\ell}/g-VS$) respectively. As for the beef cattle manure, the solid content and potential methane yield had an average of 26% and $280.6STP-m{\ell}/g-VS$ respectively. Potential methane yield had a positive correlation with fat content, and hydrogen content and a negative correlation with carbohydrate content ($r^2&gt;0.8$). Therefore, the potential methane yield can be predicted based on the substrate characterization results with reasonable accuracy. Further research may be needed to investigate the relation of the properties of the mixture substrate and methane production rate. The mixtures may include food waste, livestock waste, and bulking agents (saw dust, rice hull, or agricultural byproducts etc.) to determine best combination of these substrates for maximum methane production rate.

Feasibility of a methane reduced chemical kinetics mechanism in laminar flame velocity of hydrogen enriched methane flames simulations

  • Ennetta, Ridha;Yahya, Ali;Said, Rachid
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.213-221
    • /
    • 2016
  • The main purpose of this work is to test the validation of use of a four step reaction mechanism to simulate the laminar speed of hydrogen enriched methane flame. The laminar velocities of hydrogen-methane-air mixtures are very important in designing and predicting the progress of combustion and performance of combustion systems where hydrogen is used as fuel. In this work, laminar flame velocities of different composition of hydrogen-methane-air mixtures (from 0% to 40% hydrogen) have been calculated for variable equivalence ratios (from 0.5 to 1.5) using the flame propagation module (FSC) of the chemical kinetics software Chemkin 4.02. Our results were tested against an extended database of laminar flame speed measurements from the literature and good agreements were obtained especially for fuel lean and stoichiometric mixtures for the whole range of hydrogen blends. However, in the case of fuel rich mixtures, a slight overprediction (about 10%) is observed. Note that this overprediction decreases significantly with increasing hydrogen content. This research demonstrates that reduced chemical kinetics mechanisms can well reproduce the laminar burning velocity of methane-hydrogen-air mixtures at lean and stoichiometric mixture flame for hydrogen content in the fuel up to 40%. The use of such reduced mechanisms in complex combustion device can reduce the available computational resources and cost because the number of species is reduced.

Effects of Organic Content on Anaerobic Biodegradability of Sludge Generating from Slaughterhouse

  • Oh, Seung-Yong;Kim, Ho;Kim, Chang-Hyun;Kim, Seung-Hwan;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.296-302
    • /
    • 2013
  • This study was carried out to investigate the effect of organic content level on ultimate methane potential and anaerobic biodegradability of substrate by biochemical methane potential assay. Three organic matters (whole sludge and liquid and solid fraction of sludge) of the same origin, which had different organic contents, were fermented at the batch anaerobic reactor for 70 days. Ultimate methane potential and anaerobic biodegradability were determined by the terms of volatile solid (VS) and chemical oxygen demand (COD). Volatile solid contents of whole sludge and solid and liquid fraction of sludge were 2.4, 18.8, and 0.2% and COD were 5.3, 30.4, and 0.5%, respectively. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{VS}$) determined by VS content were $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for whole sludge, $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for the liquid fraction of sludge, and $0.6Nm^3kg^{-1}-VS_{added}$, 77.0% for the solid fraction of sludge. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{COD}$) determined by COD were $0.2Nm^3kg^{-1}-COD_{added}$, 73.4% for whole sludge, $0.2Nm^3kg^{-1}-VS_{added}$, 74.0% for the liquid fraction of sludge, and $0.33Nm^3kg^{-1}-COD_{added}$, 99.1% for the solid fraction of sludge. In conclusion, ultimate methane potential and anaerobic biodegradability given by the VS term showed more reasonable results because COD might be underestimated by the interference of $NH_4{^+}$ in the case of highly concentrated organic material.

Catalytic Activity of Commercial Metal Catalysts on the Combustion of Low-concentration Methane (저농도 메탄 연소에서 상용 금속촉매의 활성)

  • Lee Kyong-Hwan;Park Jae-Hyun;Song Kwang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.625-630
    • /
    • 2005
  • This study was focused on the catalytic activity for the combustion of low-concentration methane using various commerical catalysts (six transition metal catalysts in Russia and one rare earth metal (Honeycomb) catalyst in Korea). Catalytic activity was strongly influenced by the type and loading content of metal supported in catalyst. Catalytic performance showed the highest activity in Honeycomb catalyst including rare earth metal, which was the most expensive catalyst, while the next was the catalyst supported Cu with high content (AOK-78-52) and also that supported Cr and Co (AOK-78-56). However, both AOK-78-52 and AOK-78-56 catalysts that were very cheap had lower activation energy than Honeycomb catalyst. In the economical field, both AOK-78-52 and AOK-78-56 catalysts with transition metals showed a good alternative catalyst on the combustion of methane.

A Study on the Mixed-Food Wastewater Treatment in an Anaerobic Packed Bed Reactor and Sludge Bed Reactor (혐기성 고정상반응기와 슬러지 Bed반응기에서 혼합-식품폐수처리에 관한 연구)

  • 안재동;김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.38-43
    • /
    • 1993
  • The characteristics of food wastewater treatment in an anaerobic packed bed reactor (APBR) with polyurethane as a packing material and sludge bed reactor (ASBR) was studied. The reactor of 9cm-ID, 150cm-height was fed in a continuous mode from bottom of reactor. For the purpose of constant temperature of reactor, water jacket was installed. The used packing materials was polyurethane sponge foam. Methane which was produced by decomposed organics collected at the top of the reactor for using as a fuel. The substrates used were synthetic, mixed and food wastewater. For the acclimatization of microorganisms, mixed wastewater was used. The major analyses were gas production, COD, pH and volatile acids. Based upon the completed works, the results are as follows: When food wastewater was fed the quantity of produced gas was less than that of synthetic wastewater, but food process saw higher methane content than synthetic process. As well as COD removal efficiency of food process reached at about 85%. In aspect of effluent volatile acid, food process showed low concentration of below 500 mg/l, therefore anaerobic reaction stabled. Conclusively food wastewater used can be digested by anaerobic treatment, especially anaerobic packed bed reactor showed 82% of COD removal, 75% of methane content, 10 l of gas production, and anaerobic sludge bed reactor did 79% of COD removal, 75% of methane content, 81 of gas production at 4 kgCOD/m$^3$day, 36$\circ$C.

  • PDF

Evaluate of high solid manure characteristics and theoretical methane potential in domestic (국내 고상가축분뇨 특성 및 이론적 메탄 잠재성에 대한 평가)

  • Choi, Yongjun;Lee, Sangrak
    • Journal of Animal Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • This study was conducted to establish a database of high solid manure(HSM) in domestic. Theoretical methane potential and HSM characteristics was evaluated using breef and dairy manure (n=156). Total solids and Volatile solids of HSM increased depending on time flow, the results showed $20.4{\pm}3.2$ and $17.4{\pm}2.8%$. respectively. C/N ratio of breef HSM was higher than dairy HSM C/N ratio. In theoretical methane potential, the result of breef and dairy HSM was showed $505.2{\pm}25.3$ and $493.5{\pm}20.2$, respectively. Nitrogen content of total HSM increased depending on time flow, the result of breef and dairy nitrogen content was showed $1.9{\pm}0.3$ and $2.8{\pm}0.2$, respectively. Carbon content of total HSM showed approximately 10% reduction. The optimal time of bed replacement was indicated between 29 amd 31 days based on the optimal C/N ratio. Therefore, this study was considered that it has high utilization for livestock manure recycling and basis of relevant research.

Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes

  • Yoon, Young-Man;Kim, Seung-Hwan;Shin, Kook-Sik;Kim, Chang-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.600-607
    • /
    • 2014
  • The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability ($D_{deg}$) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities ($D_{deg}$) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and $1.076Nm^3kg^{-1}-VS_{added}$, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and $0.517Nm^3kg^{-1}-VS_{added}$ for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay.

Effects of La addition to Ni/$CeO_2$ Methane Partial Oxidation Catalysts (메탄 부분산화반응 Ni/$CeO_2$ 촉매에 LA 첨가의 영향)

  • Cheon, Han-Jin;Shin, Ki-Seok;Ahn, Sung-Hwan;Yoon, Cheol-Hun;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • The effects of La addition to Ni/$CeO_2$ methane partial oxidation catalysts were investigated. Catalysts were prepared by the impregnation and urea methods. In the preparation of catalysts, La content was changed from 1 wt% to 3wt%. Catalysts that contain 2wt% La showed the highest methane conversion of about 80% and CO selectivity of 84% and $H_2$ selectivity of 70%. This result may be stemmed from that, when La content is 2wt%, a fluorite oxide-type structure is well formed and carbon deposition is also decreased. Among the catalysts, 2.5wt% Ni/Ce(La)Ox showed the highest catalytic activity. From the experiment of changing reaction temperature with 2.5wt% Ni/Ce(La)Ox catalyst, it was found that the optimum reaction temperature is $750^{\circ}C$ and at this temperature methane conversion was about 90%, CO and $H_2$ selectivities were 94 and 80%, respectively.

The Effect of K Promoter on Ni-Co (Bimetallic) Catalyst for Dry Methane Reforming

  • Dharmasaroja, Nichthima;Phongaksorn, Monrudee;Tungkamani, Sabaithip;Ratana, Tanakorn;Sornchammi, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.110-117
    • /
    • 2015
  • 10 wt% (Ni-Co) catalysts with different Ni and Co content : 10%Ni, 9%Ni1%Co, 7%Ni3%Co, 5%Ni5%Co, 3%Ni7%Co, and 10%Co; were prepared using sol-gel method followed by incipient wetness impregnation method. To investigate the catalytic activity including the stability, dry methane reforming were demonstrated over the pelletized catalysts at $620^{\circ}C$ under atmospheric pressure in a $CH_4:CO_2:N_2$ feedstock for 360 min. The results showed that bimetallic catalysts with the Co content equal to or greater than 3% were more stable than monometallic catalysts (10%Ni and 10%Co). The temperature programmed hydrogenation interpreted that the additional of Co into Ni catalyst improved the carbon resistance from methane cracking. Promoted this type of bimetallic catalyst using 1wt% K (trimetallic catalyst) prevented the carbon formation on the catalyst. The temperature programmed desorption of $CO_2$ indicated that this trimetallic catalyst has a greater number of strong basic sites. Moreover, the appearance of K lowered the number of weak basic sites and decreased the conversion of methane by 12 %.