• Title/Summary/Keyword: Methanol steam reformer

Search Result 16, Processing Time 0.025 seconds

Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam (수증기의 잠열을 이용한 메탄올 수증기 개질기의 특성 연구)

  • CHEON, UKRAE;AHN, KANGSUB;SHIN, HYUNKHIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Fuel cells are used to generate electricity with a reformer. In particular, methanol has various advantages among the fuels for reformer. Methanol steam reformer devices can efficiently supply hydrogen to PEM fuel cell. This study investigated the optimal operation conditions of a methanol steam reforming process. For this purpose, aspen HYSYS was used for the optimization of reforming process. The optimal operating condition could be designed by setting independent variables such as temperature, pressure and steam to carbon ratio (SCR). The optimal temperature and steam to carbon ratio were $250-270^{\circ}C$ and 1.3-1.5, respectively. It is advantageous to operate at a pressure of 15-20 barg, considering the performance of the hydrogen purifier. In addition, a heat exchange network was designed to supply heat constantly to reformer through the latent heat of steam.

Computational Analysis for Improving Internal Flow of High Pressure Methanol Steam Reformer Pressure Vessel (고압형 메탄올 수증기 개질기 압력용기의 내부 유동 개선을 위한 전산 해석)

  • YU, DONGJIN;JI, HYUNJIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.411-418
    • /
    • 2020
  • A reformer is a device for producing hydrogen used in fuel cells. Among them, methanol steam reformer uses methanol as fuel, which is present as a liquid at room temperature. It has the advantage of low operating temperature, high energy density, and high hydrogen production. The purpose of this study is to improve the internal flow of the pressure vessel when a bundle of methanol steam reformer in the pressure vessel goes out to a single outlet. An analysis of equilibrium reaction to methanol steam reforming reaction was conducted using Aspen HYSYS® (Aspen Technology Inc., Bedford, USA), and based on the results, computational analysis was conducted using ANSYS Fluent® (ANSYS, Inc., Canonsburg, USA). For comparison of the results, the height of the pressure vessel, outlet diameter, and fillet was set as variables, and the optimum geometry was selected by comparing the effects of gravity and the amount of negative pressure.

Optimal Operation Condition of Pressurized Methanol Fuel Processor for Underwater Environment (수중환경용 가압형 메탄올 연료프로세서의 최적운전 연구)

  • JI, HYUNJIN;CHOI, EUNYEONG;LEE, JUNGHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.485-493
    • /
    • 2016
  • Recently submarine and unmanned underwater vehicle (UUV) are equipped with a fuel cell system as an air independent propulsion system. Methanol fuel processor can efficiently supply the hydrogen to the fuel cell system to improve the ability to dive. This study investigated the optimal conditions of the methanol fuel processor that may be used in the closed environment. For this purpose, the numerical model based on Gibbs minimization equation was established for steam reformer and three exhaust gas burners. After simulating the characteristics of steam reformer according to the steam-to-carbon ratio (SCR) and the pressure change, the SCR condition was able to narrow down to 1.1 to 1.5. Considering water consumption and the amount of heat recovered from three burners, the optimum condition of the SCR can be determined to be 1.5. Nevertheless, the additional heat supply is required to satisfy the heat balance of the methanol fuel processor in the SCR=1.5. In other to obtain additional amount of heat, the combustion of methanol is better than the increased of SCR in terms of system design.

A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer (곡유로 메탄올-수증기 개질기 공극률 및 온도 변화에 따른 물질 전달 및 메탄올 전환율에 대한 수치해석적 연구)

  • Seong, Hong Seok;Lee, Chung Ho;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.745-753
    • /
    • 2016
  • Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than $250^{\circ}C$). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and $220^{\circ}C$ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of $180^{\circ}C$ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

Study on Methanol Conversion Efficiency and Mass Transfer of Steam-Methanol Reforming on Flow Rate Variation in Curved Channel (곡유로 채널을 가지는 수증기-메탄올 개질기에서 유량 변화에 따른 메탄올 전환율 및 물질 전달에 관한 연구)

  • Jang, Hyun;Park, In Sung;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.261-269
    • /
    • 2015
  • In this study, numerical analysis of curved channel steam-methanol reformer was conducted using the computational fluid dynamics (CFD) commercial code STAR-CCM. A pre-numerical analysis of reference model with a cylindrical channel reactor was performed to validate the combustion model of the CFD commercial code. The result of advance validation was in agreement with reference model over 95%. After completing the validation, a curved channel reactor was designed to determine the effects of shape and length of flow path on methanol conversion efficiency and generation of hydrogen. Numerical analysis of the curved-channel reformer was conducted under various flow rate ($10/15/20{\mu}l/min$). As a result, the characteristics of flow and mass transfer were confirmed in the cylindrical channel and curved channel reactor, and useful information about methanol conversion efficiency and hydrogen generation was obtained for various flow rate.

Fabrication and Performance Evaluation of MEMS Methanol Reformer for Micro Fuel Cells (마이크로 연료전지용 MEMS 메탄올 개질기의 가공과 성능시험)

  • Kim, Tae-Gyu;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1196-1202
    • /
    • 2006
  • A MEMS methanol reformer was fabricated and its performance was evaluated in the present study. Catalytic steam reforming of methanol was selected because the process had been widely applied in macro scale reformers. Conventional Cu/ZnO catalyst that was prepared by co-precipitation method to give the highest coating quality was used. The reactor structure was made by bonding three layers of glass wafers. The internal structure of the wafer was fabricated by the wet-etching process that resulted in a high aspect ratio. The internal surface of the reactor was coated by catalyst and individual wafers were fusion-bonded to form the reactor structure. The internal volume of the microfabricated reactor was $0.3cm^3$ and the reactor produced exhaust gas with hydrogen concentration at 73%. The production rate of hydrogen was 4.16 ml/hr that could generate power of 350 mW in a typical PEM fuel cell.

Planar fuel cell design integrated with methanol reformer by using a high temperature membrane (고온형 멤브레인을 사용한 메탄올 개질 연료전지의 개질기 일체형 평판 설계)

  • Kim, Sung-Han;Jang, Jae-Hyuk;Gil, Jae-Hyoung;Lee, Hong-Ryul;Cha, Hye-Yeon;Ku, Bo-Sung;Jung, Chang-Ryul;Kundu, Arunaha;Miesse, Craig;Oh, Yong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.467-470
    • /
    • 2006
  • For a mobile application such as cellular phone, micro fuel cells should be extremely compact and thin. RHFC can be an alternative solution because RHFC gives higher power density than DMFC and does not need ahydrogen storage vessel In this paper, RHFC using methanol fuel is made as a novel planar design without a PROX. Both reformer and cell are made closely in a same plate to share the heater of reformer with the cell. The PBI membrane is used in the cell. The reason is that high temperature of reformer can cause a performance drop when perfluorosulfonic acid membrane such as Nafion is used such a high temperature operation also guarantees the higher CO tolerance to MEA catalyst. The cell is designed as an air-breathing type which the cathode of the cell is opened to the air. The commercial Cu/ZnO/Al2O3 steam reformer catalyst is packed in reformer channel. The active area of MEA is $11.9cm^2$ and the peak power density was $27.5mW/cm^2$.

  • PDF

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

A Study on Optimal Operation of Methanol Steam Reforming System for Hydrogen Fuel Cell Propulsion Ships (수소 연료전지 추진 선박 적용을 위한 메탄올 수증기 개질 시스템 최적 운전점 연구)

  • HEEJOO CHO;SOOBIN HYEON;SEUNGKYO JUNG;HYUNJIN JI;JUNGHO CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.733-742
    • /
    • 2022
  • Hydrogen fuel cell propulsion ships are emerging to respond to the recently strengthened carbon emission regulations in the international shipping sector. Methanol can be stored in a liquid state at normal pressure and temperature, and has the advantage of lower reforming temperature compared to other fuels. In this study, the optimal operating point of the methanol steam reforming system was derived by changing the Steam Carbon Ratio (SCR) from 0.10 to 3.00. Results showed that In terms of methanol conversion rate and hydrogen yield, the larger the SCR is the better, but in terms of system efficiency, it is most advantageous to operate at SCR 0.70 in Pressure Swing Adsorption (PSA) mode and SCR 0.80 in Pd membrane mode. Through this study, it was found that the optimal SCR in the reformer and the entire system including the reformer may be different, which indicates that the optimum operating point may be different depending on the change of the system configuration.

Development of a 50W Powered Ceramic Micro Reformer Equiped with PROX Reactor (PROX 반응기가 있는 50W급 세라믹재질의 소형 reformer 개발)

  • Chung C.H.;Kim W.J.;Oh J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.225-229
    • /
    • 2005
  • We have designed micro-fuel processor system, which consists of a steam reforming area and a PROX(preferential oxidation) area. Micro-fuel processor system generates $H_2$ rich gas from a methanol. In our experiment, we have integrated micro-fuel processor system using low temperature cofired ceramics (LTCC) process because LTCC is superior to other materials principally due to their high thermal and chemical stability, simpler fabrication processes, and lower materials cost. Therefore, we have studied and integrated micro-fuel processor system containing embedded heaters, cavities, and 3D structures of micro-channel with LTCC. Also we have optimized the LTCC process.

  • PDF