• Title/Summary/Keyword: Methylene blue degradation

Search Result 143, Processing Time 0.024 seconds

Photocatalytic Degradation of Methylene Blue using $TiO_2$ Supported on Activated Carbon (TiO$_2$가 담지된 활성탄을 이용한 Methylene Blue의 광분해)

  • Lee, Jong-Dae;Lee, Tae-Jun;Cho, Kyong-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.153-159
    • /
    • 2006
  • The photocatalytic degradation of methylene blue(MB) was investigated using $TiO_2$ as photocatalyst and UV radiation. $TiO_2$ supported with activated carbon(AC) was prepared by SOL-GEL method and depended on several parameters such as the mass ratio of $TiO_2/AC$, pH and experimental time. The presence of the anatase and rutile crystal phase was determined by XRD analyses of the prepared $TiO_2$. The degradation of MB with $TiO_2/AC$ was about 20% higher than that of AC alone. A variation of photodegradation was negligible under UV radiation conditions ( ${\geq}$ 40W). It was experimentally showed that the photodegradation rate was increased with increasing the amount of photocatalyst. The optimal catalyst was prepared by impregmation of $5wt%-TiO_2$ with AC and was calcined at $300^{\circ}C$, and showed about 99% removal efficiency for 3hrs.

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Preparation of Fe-AC/$TiO_2$ composites and pH dependence of their Photocatalytic activity for methylene blue

  • Meng, Ze-Da;Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.268-276
    • /
    • 2009
  • In this study, activated carbon (AC) was treated with ferric ion by a sol-gel method. The compound (Fe-AC) was employed for the preparation of Fe-activated carbon/$TiO_2$, (Fe-AC/$TiO_2$) composites. The prepared Fe-AC/$TiO_2$ composites were characterized with surface properties, structural crystallinity, elemental identification and photocatalytic activity. The SEM results showed that ferric compounds and titanium dioxide were fixed onto the AC surfaces. The XRD results showed that Fe-AC/$TiO_2$ composites mostly contained anatase phase. EDX showed the presence of C, O, and Ti with Fe peaks in all samples. Its photocatalytic degradation effect was evaluated with the degradation behavior of the methylene blue (MB) solution. MB degradation could be attributed to the synergetic effects of adsorption, photo-degradation of $TiO_2$ and photo-Fenton of Fe component. The degradation rate for this photocatalysis was evaluated as a function of the concentration of the dye, the amount of $TiO_2$ and the pH. Photocataytic activity is good at activity pH.

Synthesis and Characterization of Fe-fullerene/TiO2 Photocatalysts Designed for Degradation of Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.674-682
    • /
    • 2010
  • Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) solution. XRD patterns of the composites showed that the Fe-fullerene/$TiO_2$ composite contained a typical single and clear anatase phase. The surface properties shown by SEM present a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong Fe peaks for the Fe-fullerene/$TiO_2$ composite. From the photocatalytic results, the excellent activity of the Fe-fullerene/$TiO_2$ composites for degradation of methylene blue under UV light irradiation could be attributed to both the effects between photocatalytic reaction of the supported $TiO_2$, decomposition of the organometallic reaction by the Fe compound and energy transfer effects such as electron and light of the fullerene.

Photocatalytic Degradation of Methylene Blue by the Combustion Synthesized $TiO_2$ Nanoparticles (연소합성된 광촉매 $TiO_2$ 나노입자를 이용한 메틸렌블루 분해 실험)

  • Choi, Shang-Min;Lee, Gyo-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2348-2353
    • /
    • 2007
  • In this work, combustion-synthesized $TiO_2$ nanoparticles were used for the photocatalytic degradation of methylene blue with UV light irradiation. Also the results were compared with those of commercial $TiO_2$ nanoparticles (Degussa, P-25). Particle characteristics of the two were analyzed thru the SEM, TEM, and XRD. In spite of the lower specific surface area than that of P-25, the $TiO_2$ nanoparticles formed in this study showed the relatively good ability to degrade the concentration of the organics.

  • PDF

Photocatalytic Degradation of Methylene Blue in Presence of Graphene Oxide/TiO2 Nanocomposites

  • Kim, Sung Phil;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2660-2664
    • /
    • 2014
  • A simple method of depositing titanium dioxide ($TiO_2$) nanoparticles onto graphene oxide (GO) as a catalytic support was devised for photocatalytic degradation of methylene blue (MB). Thiol groups were utilized as linkers to secure the $TiO_2$ nanoparticles. The resultant GO-supported $TiO_2$ (GO-$TiO_2$) sample was characterized by transmission electron microscopy (TEM), near-edge X-ray absorption fine structure (NEXAFS), and X-ray photoelectron spectroscopy (XPS) measurements, revealing that the anatase $TiO_2$ nanoparticles had effectively anchored to the GO surface. In the photodegradation of MB, GO-$TiO_2$ exhibited remarkably enhanced photocatalytic efficiency compared with thiolated GO and pure $TiO_2$ nanoparticles. Moreover, after five-cycle photodegradation experiment, no obvious deactivation was observed. The overall results showed that thiolated GO provides a good support substrate and, thereby, enhances the photodegradation effectiveness of the composite photocatalyst.

Photocatalytic Degradation of Methylene Blue by Pd/MWCNT/TiO2 under UV and Visible Light Irradiation

  • Choi, Jong Geun;Park, Chong-Yeon;Zhu, Lei;Meng, Ze-Da;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.511-517
    • /
    • 2012
  • Pd/MWCNT/$TiO_2$ composites were synthesized by a sol-gel technique using multi-walled carbon nanotubes (MWCNT), palladium (II) chlorite ($PdCl_2$) and titanium tetrachloride ($TiCl_4$) as the carbon, palladium and titanium precursors. The Pd/MWCNT/$TiO_2$ composites prepared were characterized by BET surface area measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic activity of the composites was evaluated using the degradation of methylene blue (MB) under UV and visible light irradiation as a model.

The Microwave-assisted Photocatalytic Degradation of Methylene Blue Solution Using TiO2 Balls Prepared by Chemical Vapor Deposition (CVD법으로 제조된 산화티탄 볼과 마이크로웨이브를 이용한 메틸렌블루 수용액의 광촉매분해)

  • Park, Sang-Sook;Park, Jae-Hyeon;Kim, Sun-Jae;Jung, Sang-Chul
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1063-1068
    • /
    • 2008
  • The photocatalytic degradation of methylene blue water solution was carried out by irradiating microwave and UV light simultaneously using $TiO_2$ photocatalyst balls prepared by Chemical Vapor Deposition method. A microwave-discharged electrodeless UV lamp was developed to use microwave and UV simultaneously for photocatalytic reactions. The results of photocatalytic degradation of methylene blue showed that the decomposition rate increased with the microwave intensity, the circulating fluid velocity and auxiliary oxidizing agents added. Especially, the rate constant of $H_2O_2$-added photocatalytic reaction increased about three times from $0.0061min^{-1}$ to $0.0197min^{-1}$ when microwave was additionally irradiated. This study demonstrates that the microwave irradiation can play a very important role in photocatalytic degradation using peroxides although it is not easy to quantitatively assess the effect of microwave on photocatalytic reactions from the experimental data of this study.

Application of Photocatalytic Decomposition of Methylene Blue on N-doped TiO2 (질소 도핑 TiO2의 Methylene Blue 광분해 제거에의 적용)

  • Baek, Mi-Hwa;Choi, Su-A;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.707-712
    • /
    • 2010
  • Nitrogen-doped $TiO_2$ particles have been successfully prepared using titanium tetraisopropoxide as the Ti source and urea as the nitrogen source. As-prepared nitrogen-doped $TiO_2$ was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET) and ultraviolet-visible light (UV-vis) absorption spectra techniques. Photocatalytic degradation of Methylene Blue (MB) has been carried out in both solar light (UV-vis) and the visible region (${\lambda}=420nm$). Nitrogen-doped $TiO_2$ exhibits higher activity than the commercial $TiO_2$ photocalyst, particularly under visible-light irradiation because bandgap of nitrogen-doped $TiO_2$ becomes remarkably decreased.