• 제목/요약/키워드: Methylobacterium

검색결과 78건 처리시간 0.026초

식물생장촉진 세균 Methylobacterium spp. 와 IAA 처리가 고추와 토마토 유묘의 생육에 미치는 영향 (Comparison of Plant Growth Promoting Methylobacterium spp. and Exogenous Indole-3-Acetic Acid Application on Red Pepper and Tomato Seedling Development)

  • ;;임우종;한광현;사동민
    • 한국토양비료학회지
    • /
    • 제43권1호
    • /
    • pp.96-104
    • /
    • 2010
  • 무균 및 온실조건에서 indole-3-acetic acid (IAA)의 처리와 1-aminocyclopropane-1-carboxylate deaminase (ACCD) 및 IAA 활성을 갖는 Methylobacterium 균주 접종 시 토마토와 고추의 생장을 비교 평가하였다. 무균조건에서 1.0 ${\mu}g\;mL^{-1}$의 IAA는 고추와 토마토의 뿌리생장을 촉진시키는데 비해 10.0 ${\mu}g\;mL^{-1}$ 이상의 높은 농도에서는 뿌리생장이 억제되었다. 그러나 높은 ACCD 활성을 갖고, IAA 활성은 낮거나 가지고 있지 않은 Methylobacterium 균주들을 접종하였을 때에는 고추와 토마토 모두 IAA 처리구 보다 뿌리생장이 증진되는 것을 확인하였다. 마찬가지로 온실조건에서 Methylobacterium 균주들을 접종했을 때, 마디길이와 잎의 크기 그리고 단위 면적당 잎의 무게 (SLW)에서 유의성 있는 증진효과를 보였다. 전반적인 식물 생장에서 저농도의 IAA 처리 효과는 Methylobacterium의 효과와 비슷한 경향을 나타냈다. 유묘의 지상부 길이는 ACCD 활성과 IAA 생산능을 갖는 Methylobacterium 균주 처리구에서 유의성 있는 증가를 확인할 수 있었으며, 전체 건물중 또한 Methylobacterium 처리 시 유의성 있는 증진 효과를 확인 할 수 있었다. 하지만 고농도의 IAA는 고추와 토마토의 생물량을 억제시켰다. 이러한 결과는 접종 균주의 IAA와 ACCD가 고추와 토마토 유묘의 생장 증진에 영향을 끼친다는 것을 증명한다.

Plant Growth Substances Produced by Methylobacterium spp. and Their Effect on Tomato (Lycopersicon esculentum L.) and Red Pepper (Capsicum annuum L.) Growth

  • Ryu, Jeong-Hyun;Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Yim, Woo-Jong;Indiragandhi, Pandiyan;Kim, Kyoung-A;Anandham, Rangasamy;Yun, Jong-Chul;Kim, Kye-Hoon;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1622-1628
    • /
    • 2006
  • Bacteria from the Methylobacterium genus, called pink-pigmented facultative methylotrophic bacteria (PPFMs), are common inhabitants of plants, potentially dominating the phyllosphere population, and are also encountered in the rhizosphere, seeds, and other parts of plants, being versatile in nature. The consistent success of the Methylobacterium plant association relies on methylotrophy, the ability to utilize the one-carbon compound methanol emitted by plants. However, the efficiency of Methylobacterium in plant growth promotion could be better exploited and thus has attracted increasing interest in recent years. Accordingly, the present study investigated the inoculation effects of Methylobacterium sp. strains CBMB20 and CBMB 110 on seed imbibition to tomato and red pepper on the growth and accumulation of phytohormone levels under gnotobiotic conditions. Seeds treated with the Methylobacterium strains showed a significant increase in root length when compared with either the uninoculated control or Methylobacterium extorquens $miaA^-$ knockout mutanttreated seeds. Extracts of the plant samples were used for indole-3-acetic acid (IAA), trans-zeatin riboside (t-ZR), and dihydrozeatin riboside (DHZR) assays by immunoanalysis. The treatment with Methylobacterium sp. CBMB20 or CBMB 110 produced significant increases in the accumulation of IAA and the cytokinins t-ZR and DHZR in the red pepper extracts, whereas no IAA was detected in the tomato extracts, although the cytokinin concentrations were significantly increased. Therefore, this study proved that the versatility of Methylobacterium as a plant-growth promoting bacteria could be better exploited.

Methylobacterium sp. GL-10이 생산하는 3-Hydroxybutyrate와 3-Hydroxyvalerate의 Copolyester (Copolyester of 3-Hydroxybutyrate and 3-Hydroxyvalerate Produced by Methylobacterium sp. GL-10)

  • 이호재;박진서;이용현
    • 한국미생물·생명공학회지
    • /
    • 제19권1호
    • /
    • pp.94-99
    • /
    • 1991
  • - The further study for the identification of the previously reported pink-pigmented facultative methylotrophic bacterium (PPFM) GL-10 was carried out. The PPFM GL-10 was Gram nagative, rod, and motile by a single polarly inserted flagellum. The colonies were smooth, pink, circular, along with convex with entire margin. The isolate could utilize C1 compounds and a variety of multicarbon substrates as sole carbon and energy source. The isolate was obligately aerobic, and exhibited both catalase and oxidase activities. The deoxyribonucleic acid base composition was 65-67 mol% guanine plus cytosine. The isolate was mostly identical with Methylobacterium extorquens and named Methylobacterium sp. strain GL-10. Methylobacterium GL-10 accumulated a copolyester of 3-hydroxybutyrate and 3-hydroxyvalerate (poly-3HB/3 HV) when grown in nitrogen-free culture media containing sodium propionate as substrate at the second polyester accumulation stage. The composition of copolyester, as determined from $^1h$ NMR spectra, was 23 mol% of 3-hydroxyvalerate (3HV).

  • PDF

중금속 내성 및 식물 생장 향상 근권세균 Methylobacterium sp. SY-NiR1의 분리 및 특성 (Characterization of a Heavy Metal-Resistant and Plant Growth-Promoting Rhizobacterium, Methylobacterium sp. SY-NiR1)

  • 구소연;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.58-65
    • /
    • 2007
  • 중금속으로 오염된 토양을 정화하기 위한 rhizoremediation 기법에서 식물이 중금속을 흡수하고 이동시키는 효율을 증가시키기 위하여 토양 미생물 특히, 근권세균의 역할이 중요하다. 이를 위하여 본 연구에서는 정유공장 주변의 유류 및 중금속으로 장기간 오염된 토양에서 서식하는 4가지 식물의 근권토양으로부터 Methylobacterium sp. SY-NiR1 균주를 분리하였다. 분리한 Methylobacterium sp. SY-NiR1는 분홍색 콜로니 형성, 막대모양 및 $\alpha-proteobacteria$에 속하는 특성으로 보아 pink-pigmented facultative methylotroph인 것으로 사료된다. 이 균주는 식물성호르몬인 indole acetic acid(IAA) 생산능을 가지고 있으며, 카드뮴, 크롬, 구리, 납, 니켈 그리고 아연 등과 같은 다양한 중금속에 대하여 내성을 가지고 있었으며, $EC_{50}$을 기준으로 한 SY-NiR1의 중금속에 대한 내성은 Zn > Ni > Cu > Pb > Cd > Cr 순이다. 따라서 본 연구에서 분리한 Methylobacterium sp. SY-NiR1 균주는 중금속으로 오염된 토양에서 식물의 발아, 생장 및 발달을 도와 식물의 중금속 흡수를 증가시켜 rhizorememdiation 효율을 증가시킬 수 있을 것으로 기대된다.

Selection of Medium Components by Plackett-Burman Design for Cell Growth of a Newly Isolated Methylobacterium sp. WJ4

  • Lee, Wangjun;Lee, Jinwon
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.812-816
    • /
    • 2016
  • We isolated a novel methylotrophic bacterium from soil collected in Dongducheon Environment Affairs Agency. The isolate was identified as Methylobacterium sp. WJ4 based on phylogenetic analysis. Plackett-Burman design was employed for screening eight parameters of nitrate mineral salts (NMS) medium for cell growth of a newly isolated Methylobacterium sp. WJ4 with experimental validation. Trace element solution and vitamin stock were found to affect cell growth, which can be further optimized for increased cell growth. This is the first report of screening parameters of NMS medium which affect cell growth of strain belonging to the genus Methylobacterium using Plackett-Burman design.

Regulation of Ethylene Emission in Tomato (Lycopersicon esculentum Mill.) and Red Pepper (Capsicum annuum L.) Inoculated with ACC Deaminase Producing Methylobacterium spp.

  • Yim, Woo-Jong;Woo, Sung-Man;Kim, Ki-Yoon;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.37-42
    • /
    • 2012
  • Improvement of plant growth by Methylotrophic bacteria can be influenced through alterations in growth modulating enzymes or hormones, especially by decreasing ethylene levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or by production of indole-3-acetic acid (IAA). In this study, the effect of seven strains of Methylobacterium on seedling ethylene emission of tomato and red pepper plants was evaluated under greenhouse condition. Ethylene emission was lowest in Methylobacterium oryzae CBMB20 inoculated tomato plants and CBMB110 inoculated red pepper plants at 47 days after sowing (DAS). However, at 58 DAS all inoculated plants showed almost similar pattern of ethylene emission. Methylobacterium inoculated tomato and red pepper plants showed significantly less ethylene emission compared to control. Our results demonstrated that Methylobacterium spp. inoculation promotes plant growth due to the reduction of ethylene emission and therefore can be potentially used in sustainable agriculture production systems.

Production of Acyl-Homoserine Lactone Quorum-Sensing Signals is Wide-Spread in Gram-Negative Methylobacterium

  • Poonguzhall, Poonguzhall;Selvaraj, Selvaraj;Madhaiyan, Munusamy;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.226-233
    • /
    • 2007
  • Members of Methylobacterium, referred as pink-pigmented facultative methylotrophic bacteria, are frequently associated with terrestrial and aquatic plants, tending to form aggregates on the phyllosphere. We report here that the production of autoinducer molecules involved in the cell-to-cell signaling process, which is known as quorum sensing, is common among Methylobacterium species. Several strains of Methylobacterium were tested for their ability to produce N-acyl-homoserine lactone (AHL) signal molecules using different indicators. Most strains of Methylobacterium tested could elicit a positive response in Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. The synthesis of these compounds was cell-density dependent, and the maximal activity was reached during the late exponential to stationary phases. The bacterial extracts were separated by thin-layer chromatography and bioassayed with A. tumefaciens NTI (traR, tra::lacZ749). They revealed the production of various patterns of the signal molecules, which are strain dependent. At least two signal molecules could be detected in most of the strains tested, and comparison of their relative mobilities suggested that they are homologs of N-octanoyl-$_{DL}$-homoserine lactone ($C_8-HSL$) and N-decanoyl-$_{DL}$-homoserine lactone ($C_{10}-HSL$).

Methane Oxidation Potentials of Rice-associated Plant Growth Promoting Methylobacterium Species

  • Kang, Yeongyeong;Walitang, Denver I.;Seshadri, Sundaram;Shin, Wan-Sik;Sa, Tongmin
    • 한국환경농학회지
    • /
    • 제41권2호
    • /
    • pp.115-124
    • /
    • 2022
  • BACKGROUND: Methane is a major greenhouse gas attributed to global warming partly contributed by agricultural activities from ruminant fermentation and rice paddy fields. Methanotrophs are microorganisms that utilize methane. Their unique metabolic lifestyle is enabled by enzymes known as methane monooxygenases (MMOs) catalyzing the oxidation of methane to methanol. Rice absorbs, transports, and releases methane directly from soil water to its stems and the micropores and stomata of the plant epidermis. Methylobacterium species associated with rice are dependent on their host for metabolic substrates including methane. METHODS AND RESULTS: Methylobacterium spp. isolated from rice were evaluated for methane oxidation activities and screened for the presence of sMMO mmoC genes. Qualitatively, the soluble methane monooxygenase (sMMO) activities of the selected strains of Methylobacterium spp. were confirmed by the naphthalene oxidation assay. Quantitatively, the sMMO activity ranged from 41.3 to 159.4 nmol min-1 mg of protein-1. PCR-based amplification and sequencing confirmed the presence and identity of 314 bp size fragment of the mmoC gene showing over 97% similarity to the CBMB27 mmoC gene indicating that Methylobacterium strains belong to a similar group. CONCLUSION(S): Selected Methylobacterium spp. contained the sMMO mmoC gene and possessed methane oxidation activity. As the putative methane oxidizing strains were isolated from rice and have PGP properties, they could be used to simultaneously reduce paddy field methane emission and promote rice growth.

Methylotrophic bacteria 접종이 작물 유묘 생장에 미치는 영향 (Effect of Methylotrophic Bacteria in Seedling Development of Some Crops under Gnotobiotic Condition)

  • 홍인수;김준석;이민경;임우종;;;;한광현;사동민
    • 한국토양비료학회지
    • /
    • 제42권4호
    • /
    • pp.317-322
    • /
    • 2009
  • 농업유용미생물을 이용한 원예 및 채소작물의 건전 유묘 생산을 위하여 본 연구에서는 growth pouch 실험을 통하여 6가지 식물생육촉진 미생물을 접종하여 작물의 초기 뿌리 생장에 미치는 영향을 살펴 보았다. 본 실험에 사용한 6가지 균주는 Methylobacterium oryzae CBMB20, Methylobacterium phyllosphaerae CBMB27, Methylobacterium suomiense CBMB120, Methylobacterium strains CBMB12, CBMB15와 CBMB17이었다. 대조구와 비교했을 CBMB12, CBMB17, 및 CBMB20접종은 상추 초기 뿌리 생육에 유의성있는 효과를 보였고, CBMB102접종은 배추 초기 뿌리 생육에 유의성있는 효과를, CBMB27접종은 토마토의 초기 뿌리 생육에 유의성있는 효과를 보였다. 또한 Methylobacterium suomiense CBMB120접종은 오이, 토마토, 배추, 그리고 Methylobacterium strain CBMB12접종은 고추의 뿌리 초기 생장을 크게 촉진시켰음을 알 수 있었다. 위의 결과를 통하여 실험한 균주들을 각각의 작물 육묘 포트에 처리할 때에도 유묘의 생장속도를 촉진 시킬수 있음을 예상할 수 있다.

Formatotrophic Production of Poly-β-hydroxybutyric Acid (PHB) from Methylobacterium sp. using Formate as the Sole Carbon and Energy Source

  • Cho, Dae Haeng;Jang, Min Gee;Kim, Yong Hwan
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.719-721
    • /
    • 2016
  • Formate has been considered as an environmentally sustainable feedstock that can be used to accelerate the production of valuable chemicals. This study presents brief results of the formatotrophic production of Poly-${\beta}$-hydroxybutyric acid (PHB) by Methylobacterium sp. To evaluate the production of PHB, five species of Methylobacteria were tested using formate as the sole carbon and energy source. Methylobacterium chloromethanicum CM4 exhibited the highest productivity of PHB, which showed 1.72 g/L PHB production, 32.4% PHB content, and 0.027 g-PHB/g-formate PHB yield. These results could be used for the formatotrophic production of PHB with the concurrent reduction of $CO_2$ to formate.