• Title/Summary/Keyword: Micro- and nanostructure

Search Result 39, Processing Time 0.045 seconds

Synthesis of Thin Film Type Cu/ZnO Nanostructure Catalysts for Development of Methanol Micro Reforming System (마이크로 개질기 개발을 위한 박막형 Cu/ZnO 나노구조 촉매 합성)

  • Yeo, Chan Hyuk;Kim, Yeon Su;Im, Yeon Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.193-199
    • /
    • 2013
  • In this work, thin film type Cu/ZnO nanostructure catalysts were fabricated by several synthetic routes in order to maximize the performance of the micro reforming system. For this work, various Cu/ZnO nanostructure catalysts could be synthesized by means of four approaches which are chemical vapor method, wet solution method and their hybrid method. The reforming performance of these as-synthetic catalysts was evaluated as compared to the conventional catalysts. Among the as-synthetic nanostructures, sphere type catalysts with specific surface of $18.6m^2/g$ showed the best performance of hydrogen production rate of 30ml/min at the feed rate of 0.2ml/min. This work will give the first insight on thin film type Cu/ZnO nanostructure catalyst for micro reforming system for hydrogen production of portable electronic systems.

Bio-Inspired Micro/Nanostructures for Functional Applications: A Mini-Review

  • Young Jung;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Three-dimensional (3D) micro/nanostructures based on soft elastomers have received extensive attention in recent years, owing to their potential and advanced applicability. Designing and fabricating 3D micro/nanostructures are crucial for applications in diverse engineering fields, such as sensors, harvesting devices, functional surfaces, and adhesive patches. However, because of their structural complexity, fabricating soft-elastomer-based 3D micro/nanostructures with a low cost and simple process remains a challenge. Bio-inspired designs that mimic natural structures, or replicate their micro/nanostructure surfaces, have greatly benefited in terms of low-cost fabrication, scalability, and easy control of geometrical parameters. This review highlights recent advances in 3D micro/nanostructures inspired by nature for diverse potential and advanced applications, including flexible pressure sensors, energy-harvesting devices based on triboelectricity, superhydrophobic/-philic surfaces, and dry/wet adhesive patches.

Facile fabrication of ZnO Nanostructure Network Transistor by printing method

  • Choi, Ji-Hyuk;Moon, Kyeong-Ju;Jeon, Joo-Hee;Kar, Jyoti Prakash;Das, Sachindra Nath;Khang, Dahl-Young;Lee, Tae-Il;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.31.1-31.1
    • /
    • 2010
  • Various ZnO nanostructures were synthesized and ZnO nanostructure-based self-assembled transistors were fabricated. Compared to spindle and flower like nanostructure, the ZnO nanorod (NR) structure showed much stronger gate controllability, and greatly enhanced device performance, demonstrating that this structural variation leads to significant differences of the nanostructure network-based device performance. Also, patterned dry transfer-printing technique that can generate monolayer-like percolating networks of ZnO NRs has been developed. The method exploits the contact area difference between NR-NR and NR-substrate, rather than elaborate tailoring of surface chemistry or energetic. The devices prepared by the transferring method exhibited on/off current ratio, and mobility of ${\sim}2.7{\times}10^4$ and ${\sim}1.03\;cm^2/V{\cdot}s$, respectively. Also, they exhibited showing lower off-current and stronger gate controllability due to defined-channel between electrodes and monolayer-like network channel configuration. With multilayer stacks of nanostructures on stamp, the monolayer-like printing can be repeated many times, possibly on large area substrate, due to self-regulating printing characteristics. The method may enable high-performance macroelectronics with materials that have high aspect ratio.

  • PDF

Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures (나노허니컴 구조물을 이용한 산업용 극소수성 표면 제작)

  • Kim, Dong-Hyun;Park, Hyun-Chul;Lee, Kun-Hong;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.17-20
    • /
    • 2007
  • Superhydrophobic polytetrafluoroethylene ($Teflon^{(R)}$, Dupont) sub-micro and nanostructures were fabricated by the dipping method, based on anodization process in oxalic acid. The polymer sticking phenomenon during the replication creates the sub-microstructures on the negative polytetrafluoroethylene nanostructure replica. This process gives a hierarchical structure with nanostructures on sub-microstructures, which looks like the same structures as lotus leaf and enables commercialization. The diameter and the height of the replicated nano pillars were 40 nm and 40 um respectively. The aspect ratio is approximately 1000. The fabricated surface has a semi-permanent superhydrophobicity, the apparent contact angle of the polytetrafluoroethylene sub-micro and nanostructures is about $160^{\circ}$, and the sliding angle is less than $1^{\circ}$.

Flow Behaviors of Polymers in Micro Hot Embossing Process (미세 핫엠보싱 공정에서 폴리머의 유동특성)

  • Ban Jun Ho;Shin Jai Ku;Kim Byeong Hee;Kim Heon Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.159-164
    • /
    • 2005
  • The Hot Embossing Lithography(HEL) as a method fur the fabrication of the nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of the polymer (PMMA) film during the hot embossing process. To grasp the characteristics of the micro patterning rheology by process parameters (embossing temperature, pressure and time), we have carried out various experiments by using the nickel-coated master fabricated by the deep RIE process and the plasma sputtering. During the hot embossing process, we have observed the characteristics of the viscoelastic behavior of polymer. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM(Finite Difference Method) analysis considering the micro effect, such as a surface tension and a contact angle.

Fabrication of a Porous Carbon Surface Using Ethanol Vapor Treatment (에탄올 증기 처리를 통한 다공성 탄소 표면 제작)

  • Im, Doyeon;Kim, Geon Hwee;An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.244-248
    • /
    • 2022
  • Recently, several studies on the development of superhydrophobic surfaces using various nano-sized carbon-based materials have been conducted. The superhydrophobic surfaces developed using carbon soot have advantages such as low processing cost and remarkable physical and chemical properties. However, their durability is low. To address this problem, in this study, a superhydrophobic surface with high durability and a multilayer structure was fabricated using ethanol vapor treatment. Candle soot was deposited on an aluminum substrate coated with paraffin wax, and a micro-nano multilayer structure with a size of several micrometers was fabricated via ethanol vapor treatment. The fabricated superhydrophobic surface was confirmed to have a contact angle of at least 156° and high durability. Finally, it was confirmed that ethanol vapor not only changed the nanostructure of carbon but also affected the durability of the structure.

The Effect of Micro Nano Multi-Scale Structures on the Surface Wettability (초소수성 표면 개질에 미치는 마이크로 나노 복합구조의 영향)

  • Lee, Sang-Min;Jung, Im-Deok;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.424-429
    • /
    • 2008
  • Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: squarepillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by deep reactive ion etching (DRIE) and reactive ion etching (RIE) processes, respectively. And plasma polymerized fluorocarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nanoprotrusions was $6.37^{\circ}$ higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle.

Fabrication of Superhydrophobic Micro-Nano Hybrid Structures by Reactive Ion Etching with Au Nanoparticle Masks (나노입자 마스크를 이용하여 제작한 초소수성 마이크로-나노 혼성구조)

  • Lee, C.Y.;Yoon, S.B.;Jang, G.E.;Yun, W.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.300-306
    • /
    • 2010
  • Superhydrophobic micro-nano hybrid structures were fabricated by reactive ion etching of hydrophobic polymer micro patterns using gold nanoparticles as etch masks. Micro structures of perfluoropolyether bisurethane methacrylate (PFPE) were prepared by soft-lithographic technique using polydimethylsiloxane (PDMS) molds. Water contact angles on the surfaces of various PFPE micro structures and corresponding micro-nano hybrid structures were compared to examine the effects of micro patterning and nanostructure formation in the manifestation of superhydrophobicity. The PFPE micro-nano hybrid structures exhibited a very stable superhydrophobicity, while the micro-only structures could not reach the superhydrophobicity but only showed the unstable hydrophobicity.

In-vitro and In-vivo Evaluation of the DTBP Crosslinked Collagen and Gelatin Coated Porous Spherical BCP Granules for Using as Granular Bone Substitutes

  • Kim, Yang-Hee;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.54.2-54.2
    • /
    • 2011
  • DTBP (dimethyl 3,3`-dithiobispropionimidate) was applied to collagen and gelatin coating on BCP granules and a crosslinking agent. The DTBP crosslinking was done for decreasing the solubility of the coating and hence increasing the stability. The nanostructure of collagen and gelatin coating surfaces were observed by SEM technique. Based on the DSC thermograms and FT-IR spectrums, the crosslinkings were confirmed between collagen molecules and gelatin molecules. The compressive strength was measured before crosslinking and after that. In-vitro study was carried out by measuring cell viability and observing cell morphology after DTBP crosslinking. Moreover, the proliferation ability of MG-63 osteoblast-like cells on the crosslinked BCP granules was evaluated by Western blot assay. The BCP granules were implanted into rabbit femur for 4 weeks and 12 weeks. The bone tissue formation was analyzed with micro-computed tomography (micro-CT) and histological analysis was also carried out by hematoxylin and eosin (H&E) staining for visualization of cells.

  • PDF