• Title/Summary/Keyword: Micro-Nozzle

Search Result 209, Processing Time 0.028 seconds

Electrohydrodynamic Water Droplet Ejection Characteristics from a Micro-Water-Nozzle (미세 수관 노즐의 전기유체역학적 수적 분사특성)

  • Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1632-1637
    • /
    • 2010
  • A micro-water-nozzle, as one of a cooling means of micro-electronic devices, has been proposed and investigated. The I-V characteristics of the micro-water-nozzle and effect of applied voltage on the meniscus formation and deformation and ejection processes of de-ionized water on the micro-water-nozzle tip have been investigated. The water ejection processes, such as a drop formation, a drop deformation, a dripping, a cone jet, and an atomization, were taken place on the micro-water-nozzle tip by the electrohydrodynamic forces acted by the DC and AC high voltages applied on the meniscus of the micro-water-nozzle tip. The I-V characteristics of the micro-water-nozzle-to-plate electrode system were different from that of the same metal-point electrode system, due to the meniscus formation and water droplet ejection at the nozzle tip. The positive and negative DC and AC high voltages showed the water droplets ejection, the ejection rates of 1.8, 1.5 and 1.2 g/h respectively, which, however, showed that the proposed micro-water-nozzle-to-plate electrode system could be used as one of an effective pumping means.

Machining of The Micro Nozzle Using Focused Ion Beam (집속이온빔을 이용한 마이크로 노즐의 제작)

  • Kim G.H.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF

Characteristic Study of Micro-Nozzle according to the Ratio of Nozzle Expansion and Specific heats (노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성연구)

  • Oh Hwayoung;Huh Hwanil;Moon Seonghwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.381-385
    • /
    • 2005
  • Recently, spacecraft technology trends can be expressed three words, i.e. 'faster, cheaper and smaller'. Among these systems, micro propulsion device is an essential component. Also micro nozzle is the most important part in the micro propulsion device. In case of cold-gas thruster, micro nozzle converts the stored energy in a pressurized gas into kinetic energy through expansion ratio. In this paper we report characteristics of micro nozzle with throat expansion ratio and ratio of specific heats. We measure thrusts using strain gauge based thrust measurement system. We can estimate the micro nozzle performance through experiments.

  • PDF

An experimental study on the Vortex nozzle for generating micro-bubble by air self-suction (공기의 자가흡입에 의해 마이크로버블을 발생시키는 보텍스 노즐에 대한 실험적 연구)

  • Kwak, Gu Tae;Park, Sang Hee;Kim, Chang Su;U, Sang Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.98-104
    • /
    • 2015
  • This experiment was a study of a Vortex nozzle designed to produce micro-bubbles due To investigate air self-suction and the generation of micro-bubble by the Vortex nozzle, the dimensions of air intake region, the nozzle shape, and the nozzle exit diameter ($d_n=5,7,9.2,12.3mm$)werevaried. The air self-suction rate was ~1,000 to 2,000 cc/min at the orifice nozzle (7 mm), and ~100 and ~22 cc/min at the sector nozzles (9.2 and 12.3 mm, respectively). The most bubbles were detected in the orifice nozzle, but bubbles less than $50{\mu}m$ were found in the 12.3-mm sector nozzle. The dissolved oxygen in the tank water was much greater in Case 2 than in Case 1, at both the orifice and sector nozzles. Moreover, the reduction rate of dissolved oxygen was found to be less at the sector nozzles, than at the orifice nozzle.

Characteristic Study of Micro-Nozzles according to the Ratios of Nozzle Expansion and Specific heats in low vacuum condition (저진공상태에서 노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성 연구)

  • Kim, Youn-Ho;Jung, Sung-Chul;Huh, Hwan-Il
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.249-252
    • /
    • 2006
  • We conducted the experiment to analyze characteristics of micro-nozzle using different cold gas under two different nozzle expansion ratios in low vacuum condition. We measured thrust and chamber pressure and mass flow rate under low vacuum condition, and then compared them with those in ambient pressure.

  • PDF

Laser Microfabrication of Micro Actuator (레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발)

  • 김광열;고상철;박현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

An Experimental Study on the Orifice Nozzle System that Generates Micro-bubbles by Self-suction of Air with a Recirculating Flow (재순환 유동 공기 자가흡입에 의한 마이크로버블 발생 오리피스 노즐 시스템에 대한 실험적 연구)

  • Oh, Shin-il;Park, Sang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.82-88
    • /
    • 2018
  • An experimental study was performed on the orifice nozzle system that generates micro-bubbles by air self-suction using a venturi nozzle. This study experimentally investigates the amount of air sucked into the venturi nozzle and the number of micro-bubbles generated by the orifice nozzle system in Cases 1 and 2. The experimental conditions were varied by changing the diameter of the orifice nozzle (d=2~7 mm) and the number of holes of the perforated plate nozzle (n = 2-12). In Case 1, the air self-suction was more than 2 LPM at $d{\leq}4mm$. When d = 4 mm, the total number of bubbles was 29,777, and it was confirmed that micro-bubbles occupied approximately 65% of the total number of bubbles. In Case 2, the air self-suction was maintained constant at approximately 2.5 LPM regardless of the number (n) of holes. The total amount of bubbles increased when n increased but remained constant at approximately 44,000 when $n{\geq}7EA$. It was also confirmed that more than 80% of all bubbles were micro-bubbles when $n{\geq}10EA$. Thus, the number of micro-bubbles increased by approximately 15% compared to the experimental result of Case 1, which was optimized with d = 4 mm.

Effect of Nozzle Scanning in Micro Grooving of Glass by Powder Blasting (Powder Blasting 에 의한 유리의 미세 홈 가공시 노즐 주사횟수의 영향)

  • Kim, Kwang-Hyun;Choi, Jong-Sun;Park, Dong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1280-1287
    • /
    • 2002
  • The old technique of sandblasting which has been used for decoration of glass surface has recently been developed into a powder blasting technique for brittle materials such as glass, silicon and ceramics, capable of producing micro structures larger than $100{\mu}$ m. This paper describes the performance of powder blasting technique in micro-line grooving of glass and the effect of the number of nozzle scanning on the depth and width of line groove. Experimental results showed that increasing the no. of nozzle scanning resulted in the increase of depth and width in grooves. Increase of width which may cause several problems in the precision machining results from wear of mask film. Therefore, well-controlled masking process is the most important factor for micro machining of glass with accuracy.

A CFD Prediction of a Micro Critical Nozzle Flow (마이크로 임계노즐 유동의 CFD 예측)

  • Kim, Jae-Hyung;Woo, Sun-Hun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.652-657
    • /
    • 2001
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $k-\varepsilon$ turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

  • PDF

Study of Micro Propulsion System Based on Thermal Transpiration (열적발산원리를 이용한 마이크로 추진장치에 대한 연구)

  • Jung, Sung-Chul;Shin, Kang-Chang;Kim, Youn-Ho;Kim, Hye-Hwan;Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.25-29
    • /
    • 2007
  • Minimization of conventional propulsion device has been studied for altitude control of micro satellite. We studied micro nozzle performance and found higher significant loss for a micro nozzle with smaller nozzle throat diameter. To overcome this loss, we proposed thermal transpiration based micro propulsion system. This new system has no moving parts and can control flow by temperature gradient, and this can be an option for potential new micro propulsion system.

  • PDF