• Title/Summary/Keyword: Micro-movement

Search Result 217, Processing Time 0.029 seconds

Distortion of the Bottom Surface in Micro Cavity Machining Using MEDM (미세 캐비티 방전 가공에서 바닥면 형상 왜곡)

  • 임종훈;류시형;제성욱;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.191-197
    • /
    • 2003
  • As mechanical components are miniaturized, the demand on micro die and mold is increasing. Micro mechanical components usually have high hardness and good conductivity. So micro electrical discharge machining (MEDM) is an effective way to machine those components. In micro cavity fabrication using MEDM, it is observed that the bottom surface of cavity is distorted. Electric charges tend to be concentrated at the sharp edge. At the center of the bottom surface, debris can not be drawn off easily. These two phenomena make the bottom surface of the electrode and workpiece distort. As machining depth increases, the distorted shape of electrode approaches hemisphere. This process is affected by capacitance and the size of electrode. By using a smaller electrode than the desired cavity size and appropriate tool movement, bottom shape distortion can be prevented.

The controllable damper for micro vibration suppression (미세 진동 흡수를 위한 가변형 댐퍼)

  • Kim, Ki-Duck;Sim, Won-Chul;Jeon, Do-Young;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3289-3291
    • /
    • 1999
  • The vibration and impact hinders the movement of micro dynamic system. The controllable micro damper is a solution for this problem. In this paper, the controllable micro damper for MR(Magneto - Rheological) Fluid is designed and fabricated using bulk micromachining process and organic bonding technique. The damping constant of micro MR damper changes according to input magnetic field. The response of the micro MR damper is measured and the experimental results are compared.

  • PDF

Distortion of the Bottom Surface in Micro Cavity Machining Using MEDM

  • Lim Jong Hoon;Je Sung Uk;Ryu Shi Hyoung;Chu Chong Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.44-48
    • /
    • 2005
  • As mechanical components are miniaturized, the demands on micro die/mold are increasing. Micro mechanical components usually have high hardness and good conductivity. Micro electrical discharge machining (MEDM) can thus be an effective way to machine those components. In micro cavity fabrication using MEDM, it is observed that the bottom surface of the cavity is distorted. Electric charges tend to be concentrated at the sharp edge, and debris cannot be drawn off easily at the center of the bottom surface. These two phenomena make the bottom surface of electrode and workpiece distort. As machining depth increases, the distorted shape of the electrode approaches hemisphere. This process is affected by both capacitance and the size of electrode. By using a smaller electrode than the desired cavity size and appropriate tool movement, bottom shape distortion can be prevented.

The effect of different micro-osteoperforation depths on the rate of orthodontic tooth movement: A single-center, single-blind, randomized clinical trial

  • Ozkan, Tugba Haliloglu;Arici, Selim
    • The korean journal of orthodontics
    • /
    • v.51 no.3
    • /
    • pp.157-165
    • /
    • 2021
  • Objective: This study aimed to identify the clinical effectiveness of two different penetration depths of micro-osteoperforations (MOPs) on the rate of orthodontic tooth movement. Methods: Twenty-four patients requiring the removal of the upper first premolar teeth were selected and randomly divided into two groups. The control group participants did not undergo MOPs. Participants in the experimental group underwent three MOPs each at 4-mm (MOP-4) and 7-mm (MOP-7) depths, which were randomly and equally performed to either the left or right side distal to the canine. The retraction amount was measured on three-dimensional digital models on the 28th day of retraction. MOP-related pain was measured using a visual analog scale (VAS). Between-group statistical differences in the VAS scores were determined using an independent t-test and those in canine retraction were determined using analysis of variance and post-hoc Tukey test. Results: No significant difference was found between the MOP-4 (1.22 ± 0.29 mm/month) and MOP-7 (1.29 ± 0.31 mm/month) groups in terms of the canine retraction rate. Moreover, both the groups demonstrated a significantly higher canine movement than the control group (0.88 ± 0.19 mm/month). MOPs did not significantly affect the mesialization of the posterior teeth (p > 0.05). Moreover, the pain scores in the MOP-4 and MOP-7 groups were similar and showed no statistically significant difference. Conclusions: Three MOPs with a depth of 4 mm can be performed as an effective method to increase the rate of tooth movement. However, three MOPs with depths of 4-7 mm does not additionally enhance tooth movement.

A Micro Tribotester for MEMS Elements

  • Kim Choong-Hyun;Ahn Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2006
  • A computer-controlled micro tribotester has been developed to investigate the friction and wear characteristics of thin coatings, which can be applied to silicon-based materials. In the developed system, a step motor gives a reciprocating movement and an electromagnet applies a load between a ball and a plate specimen. Test results confirmed that the application of load in the range of $0.03{\sim}1.8N$ and with a sliding speed of $4.44{\sim}7.70mm/s$ was successfully accomplished. Advantages of the developed micro tribotester are: (1) realization of micro load and displacement applicable to micro electromechanical systems(MEMS) using DC motor and electromagnet (2) continuously variable load and reciprocating speed; and (3) high reliability, which allows for unattended use for long periods.

Study of small mobile robot actuated by PZT using vibration (진동을 이용한 PZT 구동의 소형 이동 로봇에 관한 연구)

  • Han, Sung-Joon;Kim, Sung-Hyun;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.883-889
    • /
    • 2005
  • Micro robots have been developed for many applications: medical, industrial, military, and so on. A small mobile robot was built and it has three legs made of bimorph piezoelectric actuators. It proceeds by vibrating the rear leg and it rotates by vibrating one of the front legs. The locomotion of the robot is described by relative position of mass center and the friction between the legs and the floor. This paper describes the principles of locomotion and modeling of the robot Modeling was simulated to investigate the dynamics of its mobility. The simulation results verified the modeling by showing similar movement of the robot as measured. It remained, however, several problems through experiments such as crooked direction of forward movement and proceeding speed.

  • PDF

The Development of Micro NCT for Micro Blanking/Punching of Thin Plates (미세박판가공을 위한 마이크로 NCT 제작에 관한 연구)

  • 홍남표;신용승;최근형;김병희;장인배;김헌영;오수익
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1084-1087
    • /
    • 1997
  • In this paper, we developed the micro NCT system for punching the thin plates, which is driven is driven by the standalone type microprocessor. In order to adjust the alignment between the punch and die in-situ punching procedures, the non-contact type laser sensor for measuring the burr and micro-driving system for punching die with using the differential screw are developed. The height of burr in four directions in the punched hole of test specimen are measured, and the measured data are transferred to the personal computer by RS232C serial communication technology. In the personal computer, by using the graphic user interface type monitoring program and data handling procedures which includes the filtering algorithms, the direction and length of movement of the die position is decided and these data are transferred back to the microprocessor. The microprocessor drives the micro positioning stage based on these data. Even if this method is not a perfect solution for the in-situ alignment in micro punching, but this alignment methodology is accomplished in the same stage just after the punching that we hope to solve the alignment problem in the punching system based on this technology.

  • PDF

Analysis of Response Characteristics of journal bearing on Millimeter-scale Micro Gas Turbine using Fluid numerical simulation (초소형 가스 터빈용 저널 베어링 내 유동장 수치해석을 통한 응답특성 분석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.387-391
    • /
    • 2011
  • Since MEMS based micro actuators or generating devices have high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas' turbine is one of the most powerful issue for replacing chemical batteries. However, since limiting of MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is proper bearing design which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study and design of journal bearing for 10mm diameter micro gas turbine is described Journal bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Repulsive force when there is radial displacement in bearing and returning time is calculated using steady and unsteady cases. Auto re-meshing technic is used for moving mesh unsteady cases which simulate displacement of axis and its movement. The simulation results are used for further design of micro gas turbine, and experiment will be done later.

  • PDF