• Title/Summary/Keyword: Microalgal oil

Search Result 10, Processing Time 0.024 seconds

Oil Extraction from Nannochloropsis oceanica Cultured in an Open Raceway Pond and Biodiesel Conversion Using SO42-/HZSM-5 (Open raceway pond에서 배양된 Nannochloropsis oceanica로부터 오일 추출 및 SO42-/HZSM-5를 이용한 바이오디젤 전환)

  • Ji-Yeon Park;Joo Chang Park;Min-Cheol Kim;Deog-Keun Kim;Hyung-Taek Kim;Hoseob Chang;Jun Cheng;Weijuan Yang
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, microalgal oil was extracted from Nannochloropsis oceanica cultured in an open raceway pond and converted into biodiesel using a solid acid catalyst. Microalgal oil was extracted from two types of microalgae with and without nitrogen starvation using the KOH-solvent extraction method and the fatty acid content and oil extraction yield from each microalgae were compared. The fatty acid content of N. oceanica was 184.8 mg/g cell under basic conditions, and the oil content increased to 340.1 mg/g under nitrogen starvation conditions. Oil extraction yields were 90.8 and 95.4% in the first extraction, and increased to 97.5 and 98.8% after the second extraction. Microalgal oil extracted by KOH-solvent extraction was yellow in color and had reduced viscosity due to chlorophyll removal. In biodiesel conversion using the catalyst SO42-/HZSM-5, solvent-extracted oil showed a FAME content of 4.8%, while KOH-solvent-extracted oil showed a FAME content of 90.4%. Solid acid catalyst application has been made easier by removal of chlorophyll from microalgal oil. The FAME content increased to 96.6% upon distillation, and the oxidation stability increased to 11.07 h with addition of rapeseed biodiesel and 1,000 ppm butylated hydroxyanisole.

Microalgal Oil Supplementation Has an Anti-Obesity Effect in C57BL/6J Mice Fed a High Fat Diet

  • Yook, Jin-Seon;Kim, Kyung-Ah;Park, Jeong Eun;Lee, Seon-Hwa;Cha, Youn-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.230-237
    • /
    • 2015
  • This study investigated the impact of microalgal oil (MO) on body weight management in C57BL/6J mice. Obesity was induced for 8 weeks and animals were orally supplemented with the following for 8 additional weeks: beef tallow (BT), corn oil, fish oil (FO), microalgal oil (MO), or none, as a high fat diet control group (HD). A normal control group was fed with a normal diet. After completing the experiment, the FO and MO groups showed significant decreases in body weight gain, epididymal fat pad weights, serum triglycerides, and total cholesterol levels compared to the HD and BT groups. A lower mRNA expression level of lipid anabolic gene and higher levels of lipid catabolic genes were observed in both FO and MO groups. Serum insulin and leptin concentrations were lower in the MO group. These results indicated that microalgal oil has an anti-obesity effect that can combat high fat diet-induced obesity in mice.

Study on Photo-aging Inhibition Effect of Microalgae-derived Oil for Cosmetic Material Development (화장품 소재 개발을 위한 미세조류 유래 오일의 광노화 억제 효과 연구)

  • Park, Eun-Kyung;Park, Sang-Hee;Yoon, Sang-A;Kim, You Sun;Lee, Woo-Ram;Kim, Woo-Jung
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • Ultraviolet (UV) radiation causes inflammation and matrix metalloproteinase (MMP) over-expression and extra cellular matrix depletion, leading to skin photo-aging such as wrinkle formation, dryness, and sagging. In this study, we demonstrated that pretreatment with the hexane extract of microalgae protects UVB mediated cell damages. The results of clinical study showed that Microalgal Oil treated group reduced wrinkle and improve elasticity. All these results suggest Microalgal Oil may be useful as new photo-aging cosmetics for protection against UV induced activity.

Microalgal Oil Recovery by Solvent Extraction from Nannochloropsis oceanica (Nannochloropsis oceanica로부터 용매추출법을 이용한 미세조류 오일 회수)

  • Park, Ji-Yeon;Lee, Gye-An;Kim, Keun-Yong;Kim, Ki-Yong;Choi, Sun-A;Jeong, Min-Ji;Oh, You-Kwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.88-91
    • /
    • 2014
  • In this study, oil as a source of biodiesel from Nannochloropsis oceanica was extracted using organic solvent. The oil extraction yield and efficiency from dry and wet microalgae were investigated. The initial fatty acids content of the N. oceanica was 317.8 mg/g cell showing a high oil content over 30%. The yield from dry microalgae was higher than that from wet microalgae due to the inhibition of water. The yield by chloroform-methanol was the highest and the yield by hexane was the lowest. However, the total fatty acids contents with the chloroform-methanol were 678.7 and 778.2 mg/g oil under dry and wet conditions, respectively. The high oil extraction yield by chloroform-methanol reflected the fact that the extracted oil contained a high level of impurity. The hexane-methanol extraction from dry N. oceanica showed high oil extraction efficiency, 82.6%. The chloroform-methanol extraction under wet condition also showed high efficiency, 88.0%. While the hexane-methanol extraction from dry microalgae is desirable under low drying cost, the chloroform-methanol extraction from wet microalgae is desirable under high drying cost.

A Review on Major Factors for Microalgae Biofuel Commercialization (미세조류 바이오연료 상용화를 위한 주요 인자 연구)

  • Kang, Do-Hyung;Heo, Soo-Jin;Oh, Chulhong;Ju, Se-Jong;Jeon, Seon-Mi;Choi, Hyun-Woo;Noh, Jae Hoon;Park, Se Hun;Kim, Tae-Young
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.365-384
    • /
    • 2012
  • Microalgae are photosynthetic microorganisms that are highly productive in the presence of basic renewable natural sources (light, $CO_2$, water and nutrients). They can synthesize lipids, carbohydrates and proteins in a small number of days. Subsequently, these carbon-captured products can be processed into both biofuels and valuable co-products. Additionally, microalgae would be an ideal feedstock for replacing land-based food crops with cellular products as high energy density transportation fuels. These microscopic organisms could contribute a significant amount of renewable energy on a global scale. In Korea, microalgae biofuel research was common in the early 1990s. The research activities were unfortunately stopped due to limited governmental funds and low petroleum prices. Interest in algal biofuels in Korea has been growing recently due to an increased concern over oil prices, energy security, greenhouse gas emissions, and the potential for other biofuel feedstock to compete for limited agricultural resources. The high productivity of microalgae suggests that much of the Korean transportation fuel requirements can be met by biofuels at a production cost competitive with the increasing cost of petroleum seen in early 2008. At this time, the development of microlalgal biomass production technology remains in its infancy. This study reviewed microalgae culture systems and biomass production, harvesting, oil extraction, conversion, and technoeconomical bottlenecks. Many technical and economic barriers to using microalgal biofuels need to be overcome before mass production of microalgal-derived fuel substitutes is possible. However, serious efforts to overcome these barriers could become a large-scale commercial reality. Overall, this study provides a brief overview of the past few decades of global microalgal research.

Recycling of Lipid-extracted Algae Cell Residue for Microorganisms Cultivation and Bioenergy Production (미세조류 탈지세포잔류물의 미생물 배양 및 바이오에너지 생산으로의 재활용)

  • Dang, Nhat Minh;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.487-496
    • /
    • 2021
  • Microalgae is one of the promising biodiesel feedstock with high growth rates compared to those of terrestrial oil crops. Despite its numerous advantages, biodiesel production from microalgae needs to reduce energy demand and material costs further to go to commercialization. During solvent extraction of microalgal lipids, lipid-extracted algae (LEA) cell residue is generated as an organic solid waste, about 80-85% of original algal biomass, and requires an appropriate recycling or economic disposal. The resulting LEA still contains significant amount of carbohydrates, proteins, N, P, and other micronutrients. This review will focus on recent advancement in the utilization of LEA as: (i) utilization as nutrients or carbon sources for microalgae and other organisms, (ii) anaerobic digestion to produce biogas or co-fermentation to produce CH4 and H2, and (iii) conversion to other forms of biofuel through thermochemical degradation processes. Possible mutual benefits in the integration of microalgae cultivation-biodiesel production-resulting LEA with anaerobic digestion and thermochemical conversion are also discussed.

Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method

  • Park, Jaeyeon;Jeong, Hae Jin;Yoon, Eun Young;Moon, Seung Joo
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.391-401
    • /
    • 2016
  • To develop an easy and rapid method of quantifying lipid contents of marine dinoflagellates, we quantified lipid contents of common dinoflagellate species using a colorimetric method based on the sulpho-phospho-vanillin reaction. In this method, the optical density measured using a spectrophotometer was significantly positively correlated with the known lipid content of a standard oil (Canola oil). When using this method, the lipid content of each of the dinoflagellates Alexandrium minutum, Prorocentrum micans, P. minimum, and Lingulodinium polyedrum was also significantly positively correlated with the optical density and equivalent intensity of color. Thus, when comparing the color intensity or the optical density of a sample of a microalgal species with known color intensities or optical density, the lipid content of the target species could be rapidly quantified. Furthermore, the results of the sensitivity tests showed that only $1-3{\times}10^5cells$ of P. minimum and A. minutum, $10^4cells$ of P. micans, and $10^3cells$ of L. polyedrum (approximately 1-5 mL of dense cultures) were needed to determine the lipid content per cell. When the lipid content per cell of 9 dinoflagellates, a diatom, and a chlorophyte was analyzed using this method, the lipid content per cell of these microalgae, with the exception of the diatom, were significantly positively correlated with cell size, however, volume specific lipid content per cell was negatively correlated with cell size. Thus, this sulpho-phospho-vanillin method is an easy and rapid method of quantifying the lipid content of autotrophic, mixotrophic, and heterotrophic dinoflagellate species.

Recovery of Lipids from Chlorella sp. KR-1 via Pyrolysis and Characteristics of the Pyrolysis Oil (Chlorella sp. KR-1 열분해에 의한 지질 회수 및 열분해 오일 특성 분석)

  • Lee, Ho Se;Jeon, Sang Goo;Oh, You-Kwan;Kim, Kwang Ho;Chung, Soo Hyun;Na, Jeong-Geol;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.672-677
    • /
    • 2012
  • Lipids in microalgal biomass were recovered by using pyrolysis method. The pyrolysis experiments of two Chlorella sp. KR-1 samples, which have triglyceride contents of 10.8% and 36.5%, respectively were carried out at $600^{\circ}C$ to investigate the effects of lipid contents in the cells on the reaction characteristics. The conversion and liquid yield of the lipid-rich sample were higher than those of the lipid-lean sample since its carbon to hydrogen ratio was low. There were low molecular weight organic acids, ketones, aldehydes and alcohols in the liquid products from both KR-1 samples, but the pyrolysis oil of the lipid-rich sample was abundant in free fatty acids, particularly palmitic acid, oleic acid and stearic acid while the content of nitrogen containing organic compounds was low. The microalgal pyrolysis oil had two layers composed of the light hydrophobic fraction and the heavy hydrophilic fraction. The light fraction might be originated from triglycerides and the heavy fraction might be from carbohydrates and proteins. In the light fraction of the liquid products, there were considerable linear alkanes such as pentadecane and heptadecane as well as free fatty acids, implying that deoxygenation reaction including decarboxylation was occurred during the pyrolysis. The yield of the liquid products from the pyrolysis of the KR-1 sample having triglyceride content of 36.5% was 56.9% and the light fraction in the liquid products was 68.2%. Also more than 80% of the light fraction was free fatty acids and pure hydrocarbons, thus showing that most triglycerides could be extracted in the form of suitable raw materials for biofuels.

Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives

  • Hong, Ji Won;Kang, Nam Seon;Jang, Hyeong Seok;Kim, Hyung June;An, Yong Rock;Yoon, Moongeun;Kim, Hyung Seop
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.289-309
    • /
    • 2019
  • Marine microalgae have long been used as food additives and feeds for juvenile fish and invertebrates as their nutritional content is beneficial for humans and marine aquaculture species. Recently, they have also been recognized as a promising source for cosmeceutical, nutraceutical, and pharmaceutical products as well as biofuels. Marine microalgae of various species are rich in multiple anti-oxidant phytochemicals and their bioactive components have been employed in cosmetics and dietary supplements. Oil contents in certain groups of marine microalgae are extraordinarily rich and abundant and therefore have been commercialized as omega-3 and omega-6 fatty acid supplements and mass production of microalgae-based biodiesels has been demonstrated by diverse research groups. Numerous natural products from marine microalgae with significant biological activities are reported yearly and this is attributed to their unique adaptive abilities to the great diversity of marine habitats and harsh conditions of marine environments. Previously unknown toxin compounds from red tide-forming dinoflagellates have also been identified which opens up potential applications in the blue biotechnology sector. This review paper provides a brief overview of the biotechnological potentials of Korean marine microalgae. We hope that this review will provide guidance for future marine biotechnology R&D strategies and the various marine microalgae-based industries in Korea.

Environmental Stress Strategies for Stimulating Lipid Production from Microalgae for Biodiesel (바이오디젤용 지질 생산을 위한 미세조류 배양에서 환경 스트레스 조건의 활용 전략)

  • Kim, Garam;Mujtaba, Ghulam;Rizwan, Muhammad;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.553-558
    • /
    • 2014
  • Microalgae are a promising alternative feedstock for biodiesel production because their growth rates and oil contents are higher than those of conventional energy crops. Microalgal lipid is mainly triacylglyceride that can be converted to biodiesel as fatty acid methyl esters through trans-esterification. In this paper, the influence of several important lipid inducing factors such as nutrient limitation and changes in salinity and metallic components in microalgae and their potential strategies to be used for biodiesel production are reviewed. Depending upon strains/species that we use, microalgae react to stresses by producing different amount of triacylglyceride and/or by altering their fatty acids composition. Although the most widely applied method is the nitrogen starvation, other potential factors, including nutrient surplus conditions and changes in salinity, pH, temperature and metal concentrations, should be considered to increase biodiesel productivity.