• Title/Summary/Keyword: Microbial spoilage

Search Result 102, Processing Time 0.033 seconds

Development of Convenient Software for Online Shelf-life Decisions for Korean Prepared Side Dishes Based on Microbial Spoilage

  • Seo, Il;An, Duck-Soon;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1243-1252
    • /
    • 2009
  • User-friendly software was developed to determine the shelf-life of perishable Korean seasoned side dishes in real time based on growth models of spoilage and pathogenic microorganisms. In the program algorithm, the primary spoilage and fastest-growing pathogenic organisms are selected according to the product characteristics, and their growth is simulated based on the previously monitored or recorded temperature history. To predict the growth of spoilage organisms with confidence limits, kinetic models for aerobic bacteria or molds/yeasts from published works are used. Growth models of pathogenic bacteria were obtained from the literature or derived with regression of their growth rate data estimated from established software packages. These models are also used to check whether the risk of pathogenic bacterial growth exceeds that of food spoilage organisms. Many example simulations showed that the shelf-lives of the examined foods are predominantly limited by the growth of spoilage organism rather than by pathogenic bacterial growth.

Changes of Bacterial Diversity Depend on the Spoilage of Fresh Vegetables (신선 채소류의 부패에 따른 세균의 다양성 변화 및 세균에 의한 채소 부패 조사)

  • Lee, Dong-Hwan;Ryu, Jung-El;Park, So-Yeon;Roh, Eun-Jung;Oh, Chang-Sik;Jung, Kyu-Suk;Yoon, Jong-Chul;Heu, Sung-Gi
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Almost 10~30% of vegetables were discarded by the spoilage from farms to tables. After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. This investigation was conducted to extent the knowledge of relationship the spoilage of vegetables and the diversity of microbes. The total aerobic bacterial numbers in fresh lettuce, perilla leaf, and chicory were $2.6{\sim}2.7{\times}10^6$, $4.6{\times}10^5$, $1.2{\times}10^6\;CFU/g$ of fresh weight, respectively. The most common bacterial species were Pseudomonas spp., Alysiella spp., and Burkholderia spp., and other 18 more genera were involved in. After one week of incubation of those vegetables at $28^{\circ}C$, the microbial diversity had been changed. The total aerobic bacterial numbers increased to $1.1{\sim}4.6{\times}10^8$, $4.9{\times}10^7$, and $7.6{\times}10^8\;CFU/g$ of fresh weight for lettuce, perilla leaf, and chicory that is about $10^2$ times increased bacterial numbers than that before spoilage. However, the diversity of microbes isolated had been simplified and fewer bacterial species had been isolated. The most bacterial population (~48%) was taken up by Pseudomonas spp., and followed by Arthrobacter spp. and Bacillus spp. The spoilage activity of individual bacterial isolates had been tested using axenic lettuce plants. Among tested isolates, Pseudomonas fluorescence and Pantoea agglomerans caused severe spoilage on lettuce.

Development of a Garlic Peeling System Using High-Pressure Water Jets (III) - Introduction of a microbial control system - (습식 마늘박피 시스템 개발 (III) - 미생물 제어 시스템의 도입 -)

  • Kim J.;Bae Y. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.17-24
    • /
    • 2005
  • An efficient microbial control system was introduced into a garlic peeling system using pressurized water in order to improve the quality and the shelf-life of peeled garlic. High microbial density of the spoiled peeled garlic and the water used for peeling and washing indicated that an efficient microbial control system is necessary far the peeling system. Though Pseudomonas spp. and Penicillium spp. were closely related to the spoilage of peeled garlic, the spoilage of peeled garlic was thought to be caused mainly by nonspecific increase in microbial density. The shelf-life of the garlic peeled by pressurized water was longer than that of the garlic peeled by pressurized air, and the degree of damage had great effect on the shelf-life of peeled garlic. Ozonated water was effective in decreasing the microbial contamination and in increasing the shelf-life of peeled garlic. Based on the findings of the study, following improvements were made to the garlic peeling system using pressurized water; 1) the water circulation system was modified in order to completely separate the water for washing from the water for garlic peeling, 2) filtration and cooling equipments were introduced into the circulation system of the water for peeling, and 3) an ozone generator which could continuously supply ozonated water (dissolved ozone concentration of 0.4 ppm) was attached to the circulation system of the water for washing.

Recent next-generation sequencing and bioinformatic analysis methods for food microbiome research (식품 미생물 균총 연구를 위한 최신 마이크로바이옴 분석 기술)

  • Kwon, Joon-Gi;Kim, Seon-Kyun;Lee, Ju-Hoon
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.220-228
    • /
    • 2019
  • Rapid development of next-generation sequencing (NGS) technology is available to study microbes in genomic level. This NGS has been widely used in DNA/RNA sequencing for genome sequencing, metagenomics, and transcriptomics. The food microbiology area could be categorized into three groups. Food microbes including probiotics and food-borne pathogens are studied in genomic level using NGS for microbial genomics. While food fermentation or food spoilage are more complicated, their genomic study needs to be done with metagenomics using NGS for compositional analysis. Furthermore, because microbial response in food environments are also important to understand their roles in food fermentation or spoilage, pattern analysis of RNA expression in the specific food microbe is conducted using RNA-Seq. These microbial genomics, metagenomics, and transcriptomics for food fermentation and spoilage would extend our knowledge on effective utilization of fermenting bacteria for health promotion as well as efficient control of food-borne pathogens for food safety.

Applications of Time-Temperature Integrator (TTI) as a Quality Indicator of Grounded Pork Patty

  • Chun, Ji-Yeon;Choi, Mi-Jung;Lee, Seung Ju;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.33 no.4
    • /
    • pp.439-447
    • /
    • 2013
  • Time-temperature integrators (TTIs) are simple and cost-efficient tools which may be used to predict food quality. Enzymatic TTIs are devised to indicate food quality in the form of color alterations from green to red, based on the cumulative impacts of temperature and time period on the enzymatic reactions. In this study, the quality of ground beef patties was investigated for the parameters of pH levels, color, VBN, water holding capacity, and total microbial counts, depending on various storage temperatures (5, 15, and $25^{\circ}C$). TTIs were attached to the surface of the ground beef patties in order to evaluate the degree of correlating colorimetric changes with the determined quality parameters. Through the Arrhenius equation, activation energy and constant reaction rates of TTI, VBN, and total microbial counts were calculated as to observe the relationship between enzymatic reactions of the TTI and food spoilage reactions of the ground beef patties. VBN and total microbial counts were already increased to reach decomposition index (VBN: 20, total microbial count: 7-8 Log CFU/g) of meat at middle stage of storage period for each storage temperature. Although activation energy of TTI enzymatic reactions and food spoilage reactions of the ground beef patties were similar, the change of TTI color was not a coincidence for food spoilage at $5^{\circ}C$ and $15^{\circ}C$ of storage temperature. It was suggested that TTI should be designed individually for storage temperature, time, type of meat, or decomposition index of meat.

Current state of nationally secured or researched beneficial microorganisms for developing environment-friendly agriculture practice and exploration of alternative indication for sustaining freshness (친환경 농업을 위한 농업 분야 유용미생물 확보·연구 현황 및 이에 따른 농산물 선도관리 방안 탐색)

  • Park, Jong Myong;Park, Jong-Han;You, Young-Hyun
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.1-22
    • /
    • 2016
  • In this study, the securing state of nationally indicated beneficial microbial resources was evaluated in an aspect of bio-diversity using their taxonomical information. Depending on the analysis result with the Margalef's richness or the Mehinick's index which are representative bio-diversity analytical indices, species diversity values was revealed as 8.537, 3.546 within bacterial resources, 3.349, 2.167 within fungal resources. Several developed or researched beneficial strains and spoilage microbes showed relative taxonomical relationship with comparation of their biological information. As a result, we propose the necessity or countermeasure method for preventing the microbial spoilage with the overhauling consideration of advanced research on agricultural microbiology covering crop endophyte beneficial/spoilage microorganisms.

Gamma-Irradiation Provides Microbiological Protection While Maintaining Sensory Quality Change of Fresh Kale Juice During Storage

  • Kim, Jee-youn;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.89-92
    • /
    • 2003
  • The effect of gamma-irradiation on microbiological growth in kale juice during storage was studied. Fresh kale juice was prepared and irradiated at 0, 1, 3, 5, 7, 10, and 15 kGy. D values for total bacteria, yeast and mold, Salmonella, E. coli, and Pseudomonas were 3.6, 4.0, 3.2, 1.4, and 1.6 kGy, respectively. E. coli and Pseudomonas were eliminated completely at 5 and 7 kGy, respectively. Gamma-irradiation also reduced total viable bacteria during storage. Therefore, these results indicate gamma-irradiation can prevent microbial spoilage of fresh kale juice by inactivating pathogenic microorganisms.

Influence of microbial additive on microbial populations, ensiling characteristics, and spoilage loss of delayed sealing silage of Napier grass

  • Cai, Yimin;Du, Zhumei;Yamasaki, Seishi;Nguluve, Damiao;Tinga, Benedito;Macome, Felicidade;Oya, Tetsuji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1103-1112
    • /
    • 2020
  • Objective: To measure whether a microbial additive could effectively improve the fermentation quality of delayed-sealing (DS) silage, we studied the effects of inoculants of lactic acid bacteria (LAB) and cellulase enzyme on microbial populations, ensiling characteristics, and spoilage loss of DS silage of Napier grass in Africa. Methods: Quick-sealing (QS) and DS silages were prepared with and without LAB (Lactobacillus plantarum) inoculant, cellulase enzymes, and their combination. The QS material was directly chopped and packed into a bunker silo. The DS material was packed into the silo with a delay of 24 h from harvest. Results: In the QS silage, LAB was dominant in the microbial population and produced large amounts of lactic acid. When the silage was treated with LAB and cellulase, the fermentation quality was improved. In the DS silage, aerobic bacteria and yeasts were the dominant microbes and all the silages were of poor quality. The yeast and mold counts in the DS silage were high, and they increased rapidly during aerobic exposure. As a result, the DS silages spoiled faster than the QS silages upon aerobic exposure. Conclusion: DS results in poor silage fermentation and aerobic deterioration. The microbial additive improved QS silage fermentation but was not effective for DS silage.

Microbial Floral Dynamics of Chinese Traditional Soybean Paste (Doujiang) and Commercial Soybean Paste

  • Gao, Xiuzhi;Liu, Hui;Yi, Xinxin;Liu, Yiqian;Wang, Xiaodong;Xu, Wensheng;Tong, Qigen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1717-1725
    • /
    • 2013
  • Traditional soybean paste from Shandong Liangshan and Tianyuan Jiangyuan commercial soybean paste were chosen for analysis and comparison of their bacterial and fungal dynamics using denaturing gel gradient electrophoresis and 16S rRNA gene clone libraries. The bacterial diversity results showed that more than 20 types of bacteria were present in traditional Shandong soybean paste during its fermentation process, whereas only six types of bacteria were present in the commercial soybean paste. The predominant bacteria in the Shandong soybean paste were most closely related to Leuconostoc spp., an uncultured bacterium, Lactococcus lactis, Bacillus licheniformis, Bacillus spp., and Citrobacter freundii. The predominant bacteria in the Tianyuan Jiangyuan soybean paste were most closely related to an uncultured bacterium, Bacillus licheniformis, and an uncultured Leuconostoc spp. The fungal diversity results showed that 10 types of fungi were present in the Shandong soybean paste during the fermentation process, with the predominant fungi being most closely related to Geotrichum spp., an uncultured fungal clone, Aspergillus oryzae, and yeast species. The predominant fungus in the commercial soybean paste was Aspergillus oryzae.

Isolation and Identification of Spoilage Bacteria on Organic and Conventional Fresh Produce in Korea (국내에 시판되고 있는 유기농산물과 일반농산물의 부패미생물 분리 및 동정)

  • Jung, Soon-Young;Zheng, Ling;Jung, Kyu-Seok;Heu, Sunggi;Lee, Sun-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • This study was conducted to investigate spoilage bacteria on organic and conventional fresh produce in Korea. Three samples (perilla leaf, cabbage, and romaine lettuce) of organic and conventional fresh produce were stored at $4^{\circ}C$ for 14 days and examined for spoilage bacteria on TSA. Isolated bacteria from organic and conventional fresh produces were identified using 16S rRNA sequencing method. Population of total aerobic bacteria on conventional perilla leaf, cabbage, and romaine lettuce were 7.59, 7.01, and $5.84{\log}_{10}CFU/g$, and populations of total aerobic bacteria were 6.72, 6.15, and $5.85{\log}_{10}CFU/g$, for organic perilla leaf, cabbage, and romaine lettuce, respectively. Major spoilage bacteria of organic and conventional fresh produces were similar however their levels were little different. For example, a major spoilage bacterium resulting the highest level on conventional perilla leaf was Stenotrophomonas maltophilia whereas that was Microbacterium sp. for organic produce. From these results, microflora or spoilage microorganism could be different depending on their cultivation types as conventional or organic produces and this information might be used for developing effective preservation method for different types of fresh produce.