• Title/Summary/Keyword: Microbial transglutaminase

Search Result 49, Processing Time 0.033 seconds

The Effect of Dissolved Oxygen on Microbial Transglutaminase production by Streptoverticillium morbaraense (용존산소 농도 조절이 미생물유래 Transglutaminase 생산에 미치는 영향)

  • 유재수;전계택;정용섭
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The effect of dissolved oxygen(DO) on microbial transglutaminase(mTG) production by Streptoverticillium morbaraense was studied in on-line computer controlled fermentation system. In order to control dissolved oxygen during fermentation, the agitation speed and aeration rate of 2.5 L fermenter ranged from 260 to 360 rpm and 0.3 to 3.9 L/min, respectively. The maximum microbial transglutaminase production was obtained at controlled 20% of dissolved oxygen among the various dissolved oxygen controlled batch cultures tested. The production of microbial transglutaminase at controlled 20% of dissolved oxygen was about 2.12 U/mL which was 1.1 times higher than that obtained in batch culture without control of dissolved oxygen. Also, the highest microbial transglutaminase production was obtained in fed-batch cultures in which dissolved oxygen was controlled at 20%, and it was improved almost 1.3 times in comparison with that without control of dissolved oxygen. Maximal dry cell weight and microbial transglutaminase production were 13.2 g/L and 2.6 U/mL, respectively. Finally, it was also found that fed-batch fermentation at controlled 20% of dissolved oxygen showed a good performance for the microbial transglutaminase production by on-line computer controlled fermentation system which may be generally applicable to other microbial cultures.

Optimization Studies for the Production of Microbial Transglutaminase from a Newly Isolated Strain of Streptomyces sp.

  • Macedo, Juliana Alves;Sette, Lara Duraes;Sato, Helia Harumi
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.904-911
    • /
    • 2008
  • Covalent cross-links between a number of proteins and peptides explain why transglutaminase may be widely used by food processing industries. The objective of this work was optimization of the fermentation process to produce transglutaminase from a new microbial source, the Streptomyces sp. P20. The strategy adopted to modify the usual literature media was: (1) fractional factorial design (FFD) to elucidate the key medium ingredients, (2) central composite design (CCD) to optimise the concentration of the key components. Optimization of the medium resulted in not only an 86% increase in microbial transglutaminase activity as compared to the media cited in the literature, but also a reduction in the production cost. Optimal fermentation conditions - namely temperature and agitation rate - were also studied, using CCD methodology. Usual conditions of $30^{\circ}C$ and 100 rpm were within the optimal area. All other parameters for enzyme production were experimentally proven to be optimum fermentation conditions.

Production and Characterization of a Novel Microbial Transglutaminase from Actinomadura sp. T-2

  • Kim, Hyun-Soo;Jung, Sang-Hong;Lee, In-Seon;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.187-194
    • /
    • 2000
  • An actinomycetes strain, T-2, which produces transglutaminase (EC 2.3.2.13), was isolated from soil and identified as belonging to the Actinomadura sp., based on taxonomc studies. The conditions for the transglutaminase production and its enzymatic properties were investigated. The optimum components for the transglutaminase production were 2% glucose, 1% polypeptone and soytone, and 0.1% MnCl2. The optimum pH and temperature of the enzyme reaction were pH 8.0 and $45^{\circ}C$, respectively. The enzyme was stable within the pH range of 5.0-9.0 and $30^{\circ}C-45^{\circ}C$. The novel enzyme required no calcium ions for its activity. This enzyme polymerized various proteins such as casien, soy protein, hemoglobin, egg white, gelatin, and soybean milk.

  • PDF

Stimulation of Tissue Transglutaminase Activity by Clostridium botulinum Neurotoxin Type B

  • Moon, Yu-Seok;Gi-Hyeok;Rhee, Sang-Dal;Jung, Hyun-Ho
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.161-164
    • /
    • 2003
  • Recombinant light chain of Clostridium botulinum neurotoxin type B stimulated transglutaminase activity in a dose dependent manner, Compared to native toxin, recombinant light chain showed av greater stimulatory effect on transglutaminase activity. Zn-chelating agents, inhibiting the proteolytic activity of the clostridial toxins, did not interfere with this stimulation. These results suggest that the light chain plays a major stimulatory role, which is not due to its metallopeptidase activity, but is possibly due to specific interaction with transglutaminase. More importantly, this report provides a new insight into the intracellular action of C. botulinum neurotoxins.

Inhibition of Transglutaminase and Microbial Transglutaminase Activity by Garlic

  • Lee, Nam-Hyouck;Takeuchi, Atsuyoshi;Konno, Kunihiko
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.223-227
    • /
    • 2007
  • Ground garlic inhibited the cross-linking reaction of myosin and incorporation of monodansylcadaverine (MDC) in salted Alaska pollack surimi catalyzed by transglutaminase (TGase). The component responsible for the inhibition was a thermostable, low molecular weight compound. The component also inhibited microbial transglutaminase (MTGase). The inhibition by garlic was reversibly recovered upon addition of 2-mercaptoethanol. The inhibitory component was therefore hypothesized to contain sulfhydryl groups within its structure. Alliin itself did not inhibit the cross-linking reaction. However, the addition of alliin together with garlic increased the inhibition. This result suggested that compounds derived from alliin was responsible for the inhibition of TGase activity.

Expression and Cloning of Microbial Transglutaminase in S. cerevisiae (세균 유래 단백질연결효소 Transglutaminase의 클로닝과 효모에서의 발현)

  • Kim, Hyoun-Young;Oh, Dong-Soon;Kim, Jong-Hwa
    • The Korean Journal of Mycology
    • /
    • v.36 no.1
    • /
    • pp.93-97
    • /
    • 2008
  • A $Ca^{2+}-independent$ microbial transglutaminase (mTGase) from the actinomycete Streptomyces mobaraensis IFO13819 is a useful enzyme in the food industry. It is consists 406 amino acid residues, which comprised leader and pro region of 75 amino acid residues and the structure region of 331 amino acid residues. Pro and structure gene of TGase were cloned into the yeast shuttle vector pYAEG-TER and then used to transform Saccharomyces cerevisiae 2805. Expression of mTGase in recombinant was confirmed with Northern hybridization and the maximal activity of TGase was shown 26 mU/ml.

Application of Microbial Transglutaminase and Functional Ingredients for the Healthier Low-Fat/Salt Meat Products: A Review (건강지향의 저지방/저염 식육가공품을 위한 Microbial Transglutaminase와 기능성 소재 이용 기술)

  • Lee, Hong-Chul;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.886-895
    • /
    • 2010
  • The level of fat and salt can affect the product quality and storage stability of processed meats. Additionally, consumers' demands require dietary guidelines for developing low-fat/salt functional foods. Microbial transglutaminase (MTGase), which enhances textural properties by catalyzing protein-protein cross-linkages, was introduced to develop healthier lowfat/salt meat products. The potential possibilities of low-fat/salt processed meats were reviewed under optimal conditions for functional ingredients from several previous studies. The addition of non-meat protein (e.g. sodium caseinate and soy protein isolates), hydrocolloids (e. g. konjac flour, carrageenan, and alginates), and MTGase alone or in combination with other functional ingredients improved textural and sensory properties similar to those of regularly processed meats. When MTGase was combined with hydrocolloids (konjac flour or sodium alginate) or other functional ingredients, gelling properties of meat protein were improved even at a low salt level. Based on these reviews, functional ingredients combined with new processing technologies could be incorporated into processed meats to improve the functionality of various low-fat/salt meat products.

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.746-754
    • /
    • 2010
  • Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.

Effects of Microbial Transglutaminase on Physicochemical, Microbial and Sensorial Properties of Kefir Produced by Using Mixture Cow's and Soymilk

  • Temiz, Hasan;Dagyildiz, Kubra
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.606-616
    • /
    • 2017
  • The objective of this research was to investigate the effects microbial transglutaminase (mTGs) on the physicochemical, microbial and sensory properties of kefir produced by using mix cow and soymilk. Kefir batches were prepared using 0, 0.5, 1 and 1.5 Units m-TGs for per g of milk protein. Adding m-TGs to milk caused an increase in the pH and viscosity and caused a decrease in titratable acidity and syneresis in the kefir samples. Total bacteria, lactobacilli and streptococci counts decreased, while yeast counts increased in all the samples during storage. Alcohols and acids compounds have increased in all the samples except in the control samples, while carbonyl compounds have decreased in all the samples during storage (1-30 d). The differences in the percentage of alcohols, carbonyl compounds and acids in total volatiles on the 1st and the 30th d of storage were observed at 8.47-23.52%, 6.94-25.46% and 59.64-63.69%, respectively. The consumer evaluation of the kefir samples showed that greater levels of acceptability were found for samples which had been added 1.5 U m-TGs for per g of milk protein.