• Title/Summary/Keyword: Micrococcus roseus

Search Result 5, Processing Time 0.021 seconds

Effect of Sterilization by Intense Pulsed Light on Radiation-resistant Bacterium, Micrococcus roseus (방사선 저항세균 Micrococcus roseus의 광펄스 살균 효과)

  • Kim, Bora;Kim, Ae-Jin;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.248-251
    • /
    • 2013
  • The purpose of this study was to investigate the inactivation effect of intense pulsed light (IPL) on Micrococcus roseus, an irradiation-resistant bacterium isolated from laver, and the commercial feasibility of this sterilization method on dried laver. The inactivation of M. roseus in cultivated plates increased with increasing light intensity and treatment time. Approximately 6.6 log CFU/mL reduction of the cell viability was achieved with IPL treatment for 3 min at 1,000 V of light intensity, tailing was not shown. In addition, the inactivation rate of M. roseus increased with increasing pulse number at same light intensity and treatment time. The killing efficiency for M. roseus increased with by decreasing the distance between the light source and the sample surface.

Treatment of Wastewater from Acetaldehyde Plant by Activated Sludge Process (활성슬러지 공정에 의한 Acetaldehyde 제조 공장 폐수의 처리)

  • Suh, Seung-Kyu;Kim, Jung-Ho;Kim, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.259-265
    • /
    • 1997
  • This study was conducted to Investigate the treatment of wastewater from acetaldehyde manufacturing plant by activated sludge process with Micrococcus roseus AW-6, Micrococcus roseus AW-22, Microbacterium lacticum AW-38 and Mlcrobacterium nae- vaniformans AW-41. The $COD_{Mn}$ and $BOD_5$ of the wastewater were 5, 260mg/L and 6, 452mg/L, respectively. pH was 1.85. The main organic component in the wastewater was acetic acrid which was contained 67, 600mg/L. Optimum dilution time for activated sludge process was shown 10 times. The specific substrate removal rate(BL) was 1.95day-1 and the nonbiodegradable matters(Sn) were 23.2mg/L. Saturation constant (Ks) and mainmum specific growth rate(qmax) were 1, 640mg/L and 2.33day-1, respectively. Sludge yield coefficient(Y) and endogenous respiration coefficient(kd) were 0.28mg MLVSS/mgCOD and 0.02day-1, respectively. $COD_{cr}$ removal efficiency was 91% for 1.95day of hydraulic retention time.

  • PDF

Analysis of Waste Water and Isolation of Strains Assimilation Waste Water from Acetaldehyde Plant (아세트 알데히드(특수산업) 공장폐수의 성분과 이용균주의 분리)

  • 정기택;서승교;송형익;박임동;방광웅
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.328-332
    • /
    • 1987
  • As a research for treatment of waste water from acetaldehyde plant by biological method, we investigated general characteristics of the waste water, and isolated and identified some useful bacteria which effectively treated its waste water. Among the total number of 53 strains which were grown in waste water from an acetaldehyde plant, the strains AW-6, AW-22, AW-38 and AW-41 were found to be useful for COD removal of waste water. $COD_{Mn}$ and $BOD_{5}$ of the waste water were 5260 ppm and 6452 ppm, respectively, and pH was 1.85. And the main organic component in waste water was acetic acid which was contained 6.76%. By the taxonomical characteristics, the strains AW-6, AW-22, AW-38 and AW-41 were identified as Micrococcus roseus, Micrococcus luteus, Microbacterium lacticum and Microbacterium laevanifromans or similar strain, respectively.

  • PDF

Studies on the Biological Treatment of Waste Water from Acetaldehyde Plant (아세트 알데히드(특수산업) 폐수의 생물학적 처리)

  • 정기택;서승교;송형익;박임동;방광웅
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.333-338
    • /
    • 1987
  • In order to establish the biological treatment system which can be used for treatment of waste aster from acetaldehyde plant, it was investigated optimum nutrient requirements and growth conditions by mixed culture of Micrococcus roseus AW-6, Micrococcus luteus AW-22, Microbacterium lacticum AW-38 and Microbacterium laevaniformans AW-41 as well as the effect of coagulants and neutralization reagents. Also, it was carried out the continuous culture as well as batch culture to treat the waste water by mixed culture of these strains. The COD removal rate was reached to maximum state for 96hrs culture at pH7.0 and $30^{\circ}C$ NaOH as the neutralization reagents was the most effective, but the coagulants had no effect on the COD remonal rate and the optimum dilution times for treatment were 10 fold. The COD removal rate was also increased by supplimenting 200 ppm $NH_{2}NO_{3}$, 50 ppm $KH_{2}PO_{4}$, 15 ppm $CaCl_{2}$ and 1 ppm $MgSO_{4} \cdot 7H_{2}O $ as additional nutrients. The removal rate coefficient $K_{1}$ on the batch culture was $4.5\times 10^{-6}$, and the detention time for BOD removal rate of 85% was approximately 45hrs. The COD of waste water was reduced to 15% of its initial value by the continuous culture. The COD and BOD of the effluents were to be about 60 ppm and 40 ppm, respectively, and final pH was 7.0.

  • PDF

Identification of Radiation-Resistant Bacterium Isolated from Dried Laver (Porphyra tenera) (김으로부터 분리한 방사선 저항성 세균)

  • Ahn, Hyun-Joo;Yook, Hong-Sun;Kim, Dong-Ho;Kim, Sung;Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.193-195
    • /
    • 2001
  • A radiation-resistant bacterium was isolated from gamma irradiated dried laver (Porphyra tenera) and its microbiological characteristics were examined. As a result of resistance test to gamma irradiation, the isolate was survived $10^{3}$ CFU/mL even at 30 kGy and significant shoulder line zone was shown until 20 kGy. The $D_{10}$ value was 11.27 kGy. The isolate was gram-positive, non-motile coccus and catalase-positive. n culture, the red-pigmented smooth colony was observed. The biochemical test in API (analytical profile index) system showed that the isolate fermented glucose and fructose as the carbon source. Therefore, a radiation-resistant bacterium isolated from laver was potentially identified as Micrococcus roseus sp.

  • PDF