• Title/Summary/Keyword: Microfiltration Membrane

Search Result 307, Processing Time 0.033 seconds

Biofilter pretreatment for the control of microfiltration membrane fouling

  • Park, Jae-Hyung;Satoshi Takizawa;Hiroyuki Katayama;Shinichiro Ohgaki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.31-38
    • /
    • 2003
  • A pilot scale biofilter pretreatment-microfiltration system (BF-MF) was operated to investigate the effect of biofilter treatment in fouling reduction of microfiltration. Biofiltration was expected to reduce the membrane fouling by removal of turbidity and metal oxides. The hollow-fiber MF module with a nominal pore size of 0.1$\mu$m and a surface area of 8m$^2$ was submerged in a filtration tank and microfiltration was operated at a constant flux of 0.5 m/d. Biofiltration using polypropylene pellets was performed at a high filtration velocity of 320 m/d. Two experimental setups composed of MF and BF/MF, i.e., without and with biofilter pretreatment, were compared. Throughout the experimental period of 9 months, biofilter pretreatment was effective to reduce the membrane fouling, which was proved by the result of time variations of trans-membrane pressure and backwash conditions. The turbidity removal rate by biofiltration varied between 40% to 80% due to the periodic washing for biofilter contactor and raw water turbidity. In addition to turbidity, metals, especially Mn, Fe and Al were removed effectively with average removal rates of 89.2%, 67.8% and 64.9%, respectively. Further analysis of foulants on the used membranes revealed that turbidity and metal removal by biofiltration was the major effect of biofiltration pretreatment against microfiltration fouling.

  • PDF

Purification During Crossflow Electromicrofiltration of Fermentation Broth

  • Park Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.500-505
    • /
    • 2004
  • The present study was to investigate the purification of a fermentation broth by an electromicrofiltration membrane. Microfiltration runs with a crude and a centrifuged broth, with solution of particles recovered from centrifugation and with permeates from microfiltration experiments were thus compared. Microfiltration performances were governed by colloids and small particles that induced sharp initial flux declines. For these results, the evolution of the overall membrane resistance was increased by $80\%$ in comparison with the electromicrofiltration membrane. The main focus of this study was set on the enhancement of the filtrate flux by an electric field. This pressure electrofiltration leads to a drastic improvement of the filtration by $100\%$ and the filtration time was thereby reduced. Pressure electrofiltration serves as an inter­esting alternative to the cross-flow filtration and it effectively separates advantageous constitu­ents such as amino acids and biopolymers from a fermentation broth. They were equally main­tained during the microelectrofiltration, although they were significantly reduced by $45\%$ by the microfiltration without the application of an electric field. Accordingly, since the electrofiltration membrane was provided more permeability, this study experimentally demonstrates that the permeability inside a membrane can be controlled using an electric field.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Alumina Microfiltration: Effect of Organic Matters at Nitrogen Back-flushing (광촉매 및 알루미나 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 질소 역세척시 유기물의 영향)

  • Park, Jin Yong;Sim, Sung Bo
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.441-449
    • /
    • 2012
  • Effect of humic acid (HA) with periodic nitrogen back-flushing was investigated in hybrid process of alumina microfiltration and photocatalyst for drinking water treatment. It was compared and investigated with the previous results of microfiltration water back-flushing or ultrafiltration nitrogen back-flushing in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As results, the trends of membrane fouling were different depending on nitrogen or water back-flushing, and depending on ultrafiltration or microfiltration made with the same material. Also, the nitrogen back-flushing using microfiltration was more effective membrane fouling inhibition than ultrafiltration, and the nitrogen back-flushing was more effective than water back-flushing using the same microfiltration membrane. Turbidity treatment efficiencies were almost constant independent of HA concentration, but HA treatment efficiency was the maximum at HA 10 mg/L. From this results, it was shown that the treated water HA quality increased as increasing HA concentration, but HA could be removed the most effectively by photocatalyst beads adsorption and photo-oxidation at HA 10 mg/L.

A Study on the Pretreatment Process for Sewage Reuse by Microfiltration Process (정밀여과에 의한 하수고도처리수의 재이용을 위한 전처리법에 관한 연구)

  • Kuk, Young-Long;Joo, Jae-Young;Bae, Yoon-Sun;Lee, Hye-In;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.595-601
    • /
    • 2010
  • It is evident that Korea will continue its battle with water shortage and alternative program are being taken into action. One of the main actions is reusing 1,800 tons of effluent of 357 sewage treatment plant located nationwide. Therefore this study supplemented ozone oxidation methods that would increase the efficiency of organic oxidation and coagulation. Through this method, fouling will be controled sufficiently by preventing membrane process in the system for advanced sewage treatment. In this study, ozone-coagulation-microfiltration membrane were used. The final removal efficiency of the pretreated water from the result of the ozone-coagulation were 50% of CODcr, 38% of TP and 11% of TOC respectively. Water quality treatment has decreased about 80% for TP. Ozone-coagulation-microfiltration membrane maintains the high flux while decreasing the number of organic matter and the membrane fouling, and reducing the TP. As a result, in order to reuse the water from the sewage, the ozone-coagulation-microfiltration membrane type must be considered in order to achieve the best efficiency.

Application of tube-type ceramic microfiltration membrane for post-treatment of effluent from biological wastewater treatment process using phase separation

  • Son, Dong-Jin;Kim, Woo-Yeol;Yun, Chan-Young;Kim, Dae-Gun;Chang, Duk;Sunwoo, Young;Hong, Ki-Ho
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • A tube-type ceramic membrane for microfiltration was developed, and the membrane module comprised of three membranes was also applied to biological carbon and nitrogen removal processes for post-treatment. Manufacturing the microfiltration membrane was successful with the structure and boundary of the coated and support layers within the membrane module clearly observable. Total kjeldahl nitrogen removal from effluent was additionally achieved through the elimination of solids containing organic nitrogen by use of the ceramic membrane module. Removal of suspended solids and colloidal substances were noticeably improved after membrane filtration, and the filtration function of the ceramic membrane could also easily be recovered by physical cleaning. By using the ceramic membrane module, the system showed average removals of organics, nitrogen, and solids up to 98%, 80% and 99.9%, respectively. Thus, this microfiltration system appears to be an alternative and flexible option for existing biological nutrient removal processes suffering from poor settling performance due to the use of a clarifier.

Direct and Indirect Membrane Integrity Tests for Monitoring Microbial Removal by Microfiltration (정밀여과(MF)막 미생물 제거율 모니터링을 위한 막 완전성시험)

  • Hong, Seungkwan;Miller, Frank;Taylor, James
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.801-806
    • /
    • 2004
  • The pilot study was conducted to (i) investigate the ability of various membrane integrity monitoring methods to detect changes in membrane integrity during operation, and (ii) determine the impact of membrane damage on microbial removal by microfiltration. Two variations of air pressure hold tests were investigated for direct integrity monitoring: pressure decay (PD) and diffusive air flow (DAF) tests which are most commonly used integrity tests for microfiltration (MF) membranes. Both PD and DAF tests were sensitive enough to detect one damaged fiber out of 66,000 under field operaing conditions. Indirect integrity monitoring such as turbidity and particle counting, however, responded poorly to defects in membrane systems. Microbial challenge study was performed using both new and deliberately damaged membranes, as well as varying the state of fouling of the membrane. This study demonstrated that MF membrane with nominal pore size $0.2{\mu}m$ was capable of removing various pathogens including coliform, spore, and cryptosporidium, at the level required by drinking water regulations, even when high operating pressures were applied. A sharp decrease in average log reduction value (LRV) was observed when one fiber was damaged, emphasizing the importance of membrane integrity in control of microbial contamination.

Characteristics of Crossflow Electro-microfiltration Process for Treatment of Oily Waste Water (오일함유 폐수 처리를 위한 전기정밀여과 공정 특성)

  • 최왕규;이재원;이근우
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.216-225
    • /
    • 2002
  • Experimental study on the crossflow electro-microfi1tation of simulated oil emulsion waste water was carried out with polypropylene microfiltration membrane to evaluate the applicability of electrofiltration process in the treatment of oily waste water generated from many industries including nuclear field. The effects of electric field strength transmembrane pressure, crossflow velocity, and oil emulsion concentration on the permeate flux were investigated. In electro-microfiltration process using the external electric field, significant enhancement of permeate flux was achieved by diminishing membrane fouling and it was shown that considerable permeate flux can be maintained for long-term operation compared with conventional membrane filtration process without an electric field.

Fouling Mechanism of Microfiltration/Ultrafiltration by Macromolecules and a Suppression Strategy from the Viewpoint of the Hydration Structure at the Membrane Surface

  • Akamatsu, Kazuki;Nagumo, Ryo;Nakao, Shin-ichi
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.205-212
    • /
    • 2020
  • This short review focuses on fouling by proteins and macromolecules in microfiltration/ultrafiltration. First, an experimental system that enables investigation of how the extent of the adsorption of proteins and macromolecules on membrane surfaces contributes to a decrease in filtrate flux in microfiltration/ultrafiltration is described. Using this system, a causal relationship - not a correlation - indicating that adsorption results in a decrease in filtrate flux could be clearly demonstrated in some cases. Second, a hydration structure at the membrane surface that can suppress adsorption is discussed, inspired by biomaterial research. In their hydrated states, polymers with low-fouling properties have water molecules with a particular structure. Finally, some successful examples of the development of low-fouling membranes via surface modification using low-fouling polymers are discussed.

Effect of Step-aeration on Inorganic Particle Mixtures Filtration in a Submerged Hollow Fiber Microfiltration Membrane (침지식 중공사 정밀여과 분리막에서 무기혼합입자 여과에 대한 단계별 공기세정의 영향)

  • Choi, Youngkeun;Kim, Hyun-Chul;Noh, Soohong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The goal is to compare two different aeration strategies for a pilot scale operation of submerged microfiltration with respect to the minimization of membrane fouling. A constant aeration (65 L/min) was examined parallel with a step-wise increase in airflow rate (40 to 65 L/min). The airflow rate was stepped to a higher rate every 5 min and the step-aeration cycles were repeated at regular intervals of 15 min. The comparative filtration runs were conducted with synthetic water containing powdered activated carbon (~10 g/L) and/or kaolin (~20 g/L) at a constant flux of 80 LMH. The extent and mechanisms of fouling in the microfiltration were identified by determining hydraulic resistance to filtration and the fouling reversibility after cleaning. Results showed that the step-aeration effectively alleviated fouling in the microfiltration of synthetic water compared to when using constant aeration. A substantial decrease in fouling was achieved by combining with coagulation using aluminum salts regardless of the aeration strategies. The constant aeration resulted in increased pore blocking likely due to increased accumulation of particles on the surface of membrane.

Preparation and Characterization of Microfiltration Membrane by Metal Particles (금속입자를 이용한 정밀여과막 제조와 특성평가)

  • Kim, In-Chul;Lee, Kew-Ho;Park, Joo-Young;Jeong, Bo-Reum;Kwon, Ja-Young
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.381-386
    • /
    • 2007
  • Hollow fibers were made using the nickel slurry containing nickel particles and polymers by phase inversion method. And then, metallic filters were fabricated by sintering method at $1,150^{\circ}C$ under reduction condition. Metallic microfiltration membranes were prepared by coating nickel particles on the metallic filter. The properties of the metallic hollow fiber filters and microfiltration membranes such as pore size and strength were investigated. The metallic membrane showed good resistance against acid, base and chlorine. It was observed that the membrane exhibited good recovery rate by back washing.