• Title/Summary/Keyword: Microfluidic Chip

Search Result 150, Processing Time 0.027 seconds

Biochemical Reactions on a Microfluidic Chip Based on a Precise Fluidic Handling Method at the Nanoliter Scale

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Choi, Chang-Hyoung;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.146-153
    • /
    • 2006
  • A passive microfluidic delivery system using hydrophobic valving and pneumatic control was devised for microfluidic handling on a chip. The microfluidic metering, cutting, transport, and merging of two liquids on the chip were correctly performed. The error range of the accuracy of microfluid metering was below 4% on a 20 nL scale, which showed that microfluid was easily manipulated with the desired volume on a chip. For a study of the feasibility of biochemical reactions on the chip, a single enzymatic reaction, such as ${\beta}-galactosidase$ reaction, was performed. The detection limit of the substrate, i.e. fluorescein $di-{\beta}-galactopyranoside$ (FDG) of the ${\beta}-galactosidase$ (6.7 fM), was about 76 pM. Additionally, multiple biochemical reactions such as in vitro protein synthesis of enhanced green fluorescence protein (EGFP) were successfully demonstrated at the nanoliter scale, which suggests that our microfluidic chip can be applied not only to miniaturization of various biochemical reactions, but also to development of the microfluidic biochemical reaction system requiring a precise nano-scale control.

Micro-threads of Cross-linked Hyaluronic Acid Hydrogel using a Microfluidic Chip (미세 유체 칩 기반의 히알루론산 미세 실의 제작)

  • Lee, Yun-Kyung;Lee, Kwang-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The successful synthesis of hyaluronic acid micro-threads is very promising approach for the broad application in tissue engineering such as dermal fillers. Because hyaluronic acid has the excellent biocompatibility and ability to maintain the moisture of up to several hundred times its own weight. In order to generate the hyaluronic acid micro-threads in microfluidic system, we employed two-phase flow microfluidic chip to make a rapid synthesis of the hyaluronic acid hydrogel. Hyaluronic acid was mixed with 0.02N NaOH solution and 1, 4-Butanediol diglycidyl ether (BDDE) solution and then injected into core channel. The ethanol was used for the 3-dimensional micro-thread formation in sheath channel. We manipulated the diameter of HA micro-threads using controlling of flow rates in microfluidic chip, and showed the feasibility of immobilization in HA micro-threads with florescent substances. Also, the generated HA micro-threads were evaluated and showed the suitable properties with tensile strength, bending property, and swelling profiles for dermal fillers. As a result, we suggested an innovative method for microfluidic chip-based HA micro-threads which could safely be applied as dermal filler in tissue engineering.

Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient

  • Kim, Ji Hyeon;Sim, Jiyeon;Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.380-388
    • /
    • 2018
  • Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

Design and Fabrication of Mold Insert for Injection Molding of Microfluidic tab-on-a-chip for Detection of Agglutination (응집반응 검출을 위한 미세 유체 Lab on a chip의 사출성형 금형 인서트의 디자인 및 제작)

  • Choi, Sung-Hwan;Kim, Dong-Sung;Kwon, Tai-Hun
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.667-672
    • /
    • 2006
  • Agglutination is one of the most commonly employed reactions in clinical diagnosis. In this paper, we have designed and fabricated nickel mold insert for injection molding of a microfluidic lab-on-a-chip for the purpose of the efficient detection of agglutination. In the presented microfluidic lab-on-a-chip, two inlets for sample blood and reagent, flow guiding microchannels, improved serpentine laminating micromixer(ISLM) and reaction microwells are fully integrated. The ISLM, recently developed by our group, can highly improve mixing of the sample blood and reagent in the microchannel, thereby enhancing reaction of agglutinogens and agglutinins. The reaction microwell was designed to contain large volume of about $25{\mu}l$ of the mixture of sample blood and reagent. The result of agglutination in the reaction microwell could be determined by means of the level of the light transmission. To achieve the cost-effectiveness, the microfluidic lab-on-a-chip was realized by the injection molding of COC(cyclic olefin copolymer) and thermal bonding of two injection molded COC substrates. To define microfeatures in the microfluidic lab-on-a-chip precisely, the nickel mold inserts of lab-on-a-chip for the injection molding were fabricated by combining the UV photolithography with a negative photoresist SU-8 and the nickel electroplating process. The microfluidic lab-on-a-chip developed in this study could be applied to various clinical diagnosis based on agglutination.

Chemotactic Cell Migration around Hollow Silica Beads Containing Chemotatic Reagent (약물 담지 다공성 중공 실리카 미세구 주위 세포의 주화성 이동)

  • Kim, Hae-Chun;Kang, Mi-Seon;Rhee, Seog-Woo
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.344-350
    • /
    • 2010
  • This paper demonstrates a microfluidic chip incorporating patterned hollow silica beads that can be effectively used for chemotaxis assay. The hollow silica bead has been exploited to develop a carrier for chemoattractant to induce cell migration. The microfluidic chip contains a patterned array of microfabricated docks which can hold only one bead per docking site. The hollow bead placed inside microfluidic chip releases chemotactic reagent (PDGF-BB) around its periphery in a controlled fashion which generates a signal for chemotatic migration of fibroblast cells. The number of cells migrated close to each bead has been assessed. On-chip cell migration assay showed a remarkable result proving the high efficiency and reliable accuracy in quantitative analysis. Therefore, the device could be extensively used in cell migration assay and other various studies related to cellular movements.

Microfluidic chip for characterization of mechanical property of cell by using impedance measurement (임피던스 측정을 이용한 세포의 변형성 분석용 미소유체 칩)

  • Kim, Dong-Il;Choi, Eun-Pyo;Chio, Sung-Sik;Park, Jung-Yul;Lee, Sang-Ho;Yun, Kwang-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • In this paper we propose a microfluidic chip that measures the mechanical stiffness of cell membrane using impedance measurement. The microfluidic chip is composed of PDMS channel and a glass substrate with electrode. The proposed device uses patch-clamp technique to capture and deform a target cell and measures impedance of deformed cells. We demonstrated that the impedance increased after the membrane stretched and blocked the channel.

Development of Microfluidic Polydiacetylene Sensor Chip for pH detection (pH 검출을 위한 미세유동 폴리디아세틸렌 센서칩 개발)

  • Hwang, Hyun-Jin;Song, Si-Mon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2415-2418
    • /
    • 2008
  • Polydiacetylenes (PDAs) are very attractive chemical substances which have distinctive features of color change and fluorescence emission by thermal or chemical stress. Especially, when PDAs contact with solutions of a particular pH, such as a strong alkaline sodium hydroxide (NaOH) solution or a strong acidic hydrogen chloride (HCl) solution, PDAs change their color from non-fluorescent blue to fluorescent red. In this study, we propose a novel method to detect alkaline pH using PDAs and NaOH solutions by hydrodynamic focusing on a microfluidic chip. Preliminary results indicate that the fluorescent intensity of PDAs increases in respond to the NaOH solution concentrations. Also, the fluorescence is quenched back when the PDAs are in contact with a HCl solution. These results are useful in a microfluidic PDA sensor chip design for pH detection.

  • PDF

Microbead-based bio-assay using quantum dot fluorescence in a microfluidic chip (미소유체 칩 상에서 Quantum Dot 및 마이크로 비드를 이용한 생체물질 분석)

  • Yun, Kwang-Seok;Lee, Do-Hoon;Kim, Hak-Sung;Yoon, Eui-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.308-312
    • /
    • 2005
  • We present a microfluidic chip designed for the detection of antibody by using quantum dots fluorescence and a microbead-based assay. A custom designed PDMS microfluidic chip with multi-layer channel is utilized for capturing microbeads; antibody injection into each micro-well; QD injection; and fluorescence detection. The experiment using the fabricated microfluidic chip has been performed on solutions with various concentrations of antibody and has shown correlated fluorescent intensities.

Numerical Analysis of the Filling Stage in Insert Injection Molding of Microfluidic Chip with Metal Electrodes (금속 전극을 포함한 미세유체 칩의 인서트 사출성형 충전 공정 해석)

  • Lee, Bong-Kee;Na, Seung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.969-976
    • /
    • 2015
  • In the present study, a numerical investigation of an insert injection molding process was carried out for the development of thermoplastic microfluidic chip plates with metal electrodes. Insert injection molding technology enables efficient realization of a plastic-metal hybrid structure and various efforts have been undertaken to produce novel components in several application fields. The microfluidic chip with metal inserts was proposed as a representative example and its molding process was analyzed. The important characteristics of the filling stage, such as the effects of filling time and thickness of the part cavity, were characterized. Furthermore, the detailed distributions of pressure and temperature at the end of the filling stage were investigated, revealing the significance of metal insert temperature.

Assay development and HTS on microfluidic Lab-on-a-chip

  • Yang, Eun-Gyeong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.73-78
    • /
    • 2002
  • Microfluidic lab-on-a-chip (LOC) systems have enabled a new generation ofassay technologies in chemical and biomedical sciences. Caliper's microfluidic LOC systems contain a network of microscopic channels through which fluids and chemical are moved in order to perform experiments. The main advantages of these continuous-flow devices are integration and automation of multiple steps in complex analytical procedures to improve the reproducibility of the results, and eliminated the manual labor, time and pipetting errors involved in analyses. The present talk is devoted to give a brief introduction of microfluidic basics and to present in applying continuous-flow microchips to drug screening with model enzyme assays.

  • PDF