• Title/Summary/Keyword: Microscopy

Search Result 11,775, Processing Time 0.03 seconds

Probing of Surface Potential Using Atomic Force Microscopy

  • Kwon, Owoong;Kim, Yunseok
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.100-104
    • /
    • 2014
  • As decreasing device size, probing of nanoscale surface properties becomes more significant. In particular, nanoscale probing of surface potential has paid much attention for understanding various surface phenomena. In this article, we review different atomic force microscopy techniques, including electrostatic force microscopy and Kelvin probe force microscopy, for measuring surface potential at the nanoscale. The review could provide fundamental information on the probing method of surface potential using atomic force microscopy.

Multispectral intravital microscopy for simultaneous bright-field and fluorescence imaging of the microvasculature

  • Barry G. H. Janssen;Mohamadreza Najiminaini;Yan Min Zhang;Parsa Omidi;Jeffrey J. L. Carson
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.12.1-12.12
    • /
    • 2021
  • Intravital video microscopy permits the observation of microcirculatory blood flow. This often requires fluorescent probes to visualize structures and dynamic processes that cannot be observed with conventional bright-field microscopy. Conventional light microscopes do not allow for simultaneous bright-field and fluorescent imaging. Moreover, in conventional microscopes, only one type of fluorescent label can be observed. This study introduces multispectral intravital video microscopy, which combines bright-field and fluorescence microscopy in a standard light microscope. The technique enables simultaneous real-time observation of fluorescently-labeled structures in relation to their direct physical surroundings. The advancement provides context for the orientation, movement, and function of labeled structures in the microcirculation.

Cryo-Transmission Electron Microscopy in Korean Society of Microscopy

  • Han, Sung Sik
    • Applied Microscopy
    • /
    • v.47 no.4
    • /
    • pp.215-217
    • /
    • 2017
  • Dr. Jacques Dubochet, Dr. Joachim Frank, and Dr. Richard Henderson received the 2017 Nobel Prize for Chemistry for their efforts to develop effective ways to obtain high-resolution three-dimensional images of biomolecules using cryo-electron microscopy. Congratulations to the Nobel Prize in the field of electron microscopy, I will explain the scientific contributions of the three winners and introduce the role of cryo-electron microscopy (including cryo technology) in biology.

Molecular Structure of Muscle Filaments Determined by Electron Microscopy

  • Craig, Roger
    • Applied Microscopy
    • /
    • v.47 no.4
    • /
    • pp.226-232
    • /
    • 2017
  • Electron microscopy and X-ray diffraction have together played a key role in our understanding of the molecular structure and mechanism of contraction of muscle. This review highlights the role of electron microscopy, from early insights into thick and thin filament structure by negative staining, to studies of single myosin molecule structure, and finally to recent high-resolution structures by cryo-electron microscopy. Muscle filaments are designed for movement. Their labile structures thus present challenges to obtaining near-atomic detail, which are also discussed.

Solid-immersion lens based confocal microscopy using super-continuum generation effect (Super-continuum generation 현상을 이용한 Solid-immersion lens 기반 공초점 현미경)

  • Lee, Won-Sup;Moon, Hyungbae;Lim, Geon;Choi, Guk-Jong;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.2
    • /
    • pp.22-25
    • /
    • 2015
  • In this paper, we demonstrate solid-immersion lens based confocal microscopy using super-continuum generation effect. Using super-continuum generation effect, we could diversify the excitation wavelength of confocal microscopy. Further, high refractive index of solid-immersion lens would increase the resolution of confocal microscopy. As a result, by applying the super-continuum generation effect and solid-immersion lens to confocal microscopy, some problems of confocal fluorescent microscopy, the excitation wavelength and the resolution, could be overcome. To verify it, we made home-built solid-immersion lens based confocal microscopy using super-continuum generation effect, and evaluate the performance of the system.

Recent Developments in Correlative Super-Resolution Fluorescence Microscopy and Electron Microscopy

  • Jeong, Dokyung;Kim, Doory
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications

  • Young-Min Kim;Jihye Lee;Deok-Jin Jeon;Si-Eun Oh;Jong-Souk Yeo
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.7.1-7.9
    • /
    • 2021
  • Neuromorphic systems require integrated structures with high-density memory and selector devices to avoid interference and recognition errors between neighboring memory cells. To improve the performance of a selector device, it is important to understand the characteristics of the switching process. As changes by switching cycle occur at local nanoscale areas, a high-resolution analysis method is needed to investigate this phenomenon. Atomic force microscopy (AFM) is used to analyze the local changes because it offers nanoscale detection with high-resolution capabilities. This review introduces various types of AFM such as conductive AFM (C-AFM), electrostatic force microscopy (EFM), and Kelvin probe force microscopy (KPFM) to study switching behaviors.

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.