• Title/Summary/Keyword: Mini-slump

Search Result 32, Processing Time 0.028 seconds

Review on Analytical Solutions for Slump Flow of Cement Paste (시멘트 페이스트의 슬럼프 유동 모사를 위한 분석적 해의 검토)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.21-32
    • /
    • 2016
  • PURPOSES : In this paper, the analytical solutions suggested to simulate the behavior of rheological fluids were rigorously re-derived and investigated for fixed conditions to evaluate the applicability for the solutions on a mini-cone slump test of cement paste. The selected solutions with proper boundary conditions can be used as reference solutions to evaluate the performance of numerical simulation approaches, such as the discrete element method. METHODS : The slump, height, and spread radius for the given boundary and yield stress conditions that are determined by five different analytical solutions are compared. RESULTS : The analytical solution based on fluid mechanics for pure shear flow shows similar results to that for intermediate flow at low yield stresses. The fluid mechanics-based analytical solution resulted in a very similar trend to the geometry-based analytical solution. However, it showed a higher slump at high yield stress and lower slump at low yield stress ranges than the geometry-based analytical model. The analytical solution based on the mini-cone geometry was not significantly affected by the yield criteria, such as von Mises and Tresca. CONCLUSIONS : Even though differences among the analytical solutions in terms of slump and spread radius existed, the difference can be considered insignificant when the solutions were used as reference to evaluate the appropriateness of numerical approaches, such as the discrete element method.

Fluidity and Setting Properties of Cement Paste by Adding of Fluoro Anhydrite and Fly Ash (불산 무수석고와 플라이 애쉬를 첨가한 시멘트 페이스트의 유동성 및 응결특성)

  • 노재성;김도수;홍성수;임계규;임헌성
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1261-1267
    • /
    • 1997
  • Four kids of powder admixtures(A, B, C, D) based on anhydrite were manufactured by mixing at a fixed rate of II-anhydrite, fly ash and active silica as an industrial by-product. Fluidity properties of cement paste such as mini-slump, apparent viscosity with elapsed time, as well as setting time of cement pastes of these admixtures substituted up to 11wt% of cement were compared to those of cement paste(SS) substisuted by marketed high-strength powder admixture(S). Among these powder admixtures, the fluidity of cement pastes(PA, PC) substituted by A and C powder admixtures manufactured from II-anhydrite and fly ash had an excellent property than that of cement paste substituted by marketed powder admixture and also a good fluidity-retention effect with elapsed time by adding of superplasticizer. The setting time of cement paste substituted by powder admixtures based on anhydrite slightly retarded than that of cement paste substituted by marketed powder admixture.

  • PDF

Rheological Properties of Cement Paste Containing Ultrafine Blastfurnace Slag (초미분말 고로슬래그를 혼합한 시멘트 페이스트의 유동특성)

  • You, Chang-Dal;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.430-436
    • /
    • 2007
  • Rheological properties of cement paste containing ultrafine blastfurnace slag (UBS, $9600cm^2/g$) were investigated by mini-slump test, pH meter, conduction calorimeter and coaxial cylinder viscometer. In order to improve rheological properties of the cement paste, granulated blastfurnace slag (GBS, $3500cm^2/g$) and polycarboxylate type superplasticizer (PC) were also used in this experiment. The fluidity of cement paste containing UBS was decreased. The yield stress and plastic viscosity of cement paste was increased with increasing UBS. But the rheological properties were improved when GBS and PC were added to UBS blended cement paste. In the relationship between the yield stress and the plastic viscosity or the mini-slump value, the yield stress of the cement paste was proportional to the plastic viscosity of it. However the cement paste mini-slump value was in inverse proportional to the yield stress.

Fluidity and Hydration Properties of Cement Paste Added Zinc Fluosilicate(ZnSiF6, aq.) (규불화아연(ZnSiF6, aq)이 첨가된 시멘트의 유동성과 수화특성)

  • Kim, Do-Su;Khil, Bae-Su;Lim, Heon-Seong;Nam, Jae-Hyun;Rho, Jae-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • Zinc fluosilicate ($ZnSiF_6$, 15% aqueous solution) was prepared using zinc oxide (ZnO) and fluosilicic acid ($H_2SiF_6$) by soluiton synthetic method. The fluidity and hydration properties of cement which was added $ZnSiF_6$ (aq.) as an additive for cement were studied. At water to cement ratio (W/C) equals to 0.45, the initial fluidity and slump loss of cement paste which the addition of $ZnSiF_6$ (aq.) was increased from 1.0% to 4.0% based on cement weight were investigated. Initial fluidity of cement paste was measured by mini-slump test and slump loss was examined by measuring the fluidity variation of cement paste with time elapsed from 0 min to 120 min at intervals 30 min. Also, the effect of $ZnSiF_6$ addition on the setting and hydration of cement paste when $ZnSiF_6$ increased in the addition range 1.0% to 3.0% were investigated. The fluidity of cement paste which was added 2.1% $ZnSiF_6$ (aq.) presented the highest value among all addition ranges. The setting time of cement paste was retarded gradually and the heat evolution of hydrated cement was reduced with the increasing of $ZnSiF_6$ addition.

Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique

  • Cevik, Abdulkadir;Sonebi, Mohammed
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.475-490
    • /
    • 2008
  • The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash (분쇄된 플라이애시를 혼합한 3성분계 시멘트의 유동특성)

  • Park, Hyo-Sang;Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • In this study, rheological properties of ternary system cement containing ground fly ash(F3, Blaine specific surface area $8,100\;cm^2/g$) were investigated using mini slump, coaxial cylinder viscometer and conduction calorimeter. In the results, the segregation resistance was observed at high W/B and PC area while the replacement ratio of F3 was increasing. The 2:5:3 system was shown in higher fluidity and lower hydration heat than 3:4:3 system. The segregation range of cement pastes occurred over 175 mm in average diameter by mini slump and below $10\;dynesec/cm^2$ of the plastic viscosity or below 50 cP of the yield stress by coaxial cylinder viscometer. It was observed that even if BFS and FA blended together admixture properties would remaine as they were separately. The properties of admixture would not be changed. On the above results, the decreased replacement ratio of OPC and increased replacement ratio of admixtures would be possible.

Rheological Characteristics of Fiber-Reinforced High-Strength AFR Concrete (섬유보강 고강도 내화콘크리트의 레올로지 특성 분석)

  • Choi, Sun-Mi;Lee, Bum-Sik;Bae, Kee-Sun;Kim, Sang-Yun;Park, Su-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.543-544
    • /
    • 2009
  • The fiber(NY, PP) known to the effective material on improvement of the fire-resistance of HSC(high strength concrete) has a difference for fluidity according to the variation of a length and contents of fiber. In this study, to analyze the effect of a length and contents of the fiber on the fluidity of HSC and fheological characteristics, we calculated a viscosity of mortar by mini slump-flow, simple V-lot and viscometer. With the test results, the fluidity characteristic showed a moderate difference by a length and contents of the fiber, but showed a significant difference by increase of the fiber contents. ${\ast}$ AFR Concrete (Advenced Fire Resistant Concrete)

  • PDF

Fluidity Changes of Cement Paste added Superplasticizer and Inorganic Fine Powders for Cement Admixture (고유동화제와 시멘트 혼화용 무기미분체가 첨가된 시멘트 페이스트의 유동성 변화)

  • 김도수;정흥호;박병배;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.751-759
    • /
    • 2000
  • Effects of the dosage change, from 0 to 2.0 wt% based on cement weight, of naphthalenic (NSF) and polycarboxylic(NT-2) superplasticizers, on the fluidity of cement paste substituted by 10 wt% II-anhydrite and fly ash respectively as well as II-anhydrite and fly ash itself were investigated. Dispersion properties between particles in suspension were investigated by zeta potential test. Initial fluidity and slump loss in the paste system were observed through mini-slump and apparent viscosity changes with elapsed time. Zeta potential on the particle surface was a tendency to increase according to increasing of NSF dosage. Especially, zeta potential of fly ash has the highest value among all particles equivalent to NSF dosage. In the fluidity of cement paste substituted by inorganic particles, the specimen with substitution of 10 wt% II-anhydrite and fly ash for cement was more effective than cement itself to improve initial fluidity and retain stable fluidity of cement paste. In addition, effect of NT-2 and NSF to improve the fluidity of cement paste, addition of 1.0 wt% NT-2 was more effective than 1.5wt% NSF.

  • PDF

The characteristics of Low Blaine Cement (저 분말도 포틀랜드 시멘트의 특성)

  • 김재영;전준영;송종택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.13-18
    • /
    • 1998
  • This experiments carried out in order to investigate decreasing of the hydration heat and physical characteristics of the low blaine OPC. The experiments results indicated hydration heat was reduced by about 15% in th low blaine OPC(2300$\textrm{cm}^2$/g). The Mini-slump value of the cement paste was significantly increased and viscosity of one was decreased as blaine value in OPC decrease.

  • PDF

A Comparison Study Between Evaluation Methods on the Rheological Properties of Cement Paste (시멘트 페이스트의 유동 특성에 관한 평가방법 비교연구)

  • Han Cheon-Goo;Lee Gun-Cheol;Heo Young-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.75-82
    • /
    • 2006
  • This study investigates the influence of various blending factors on cement paste fluidity and find out the most effective evaluation method of cement paste flow, comparing flow test apparatuses such as ring flow(R-F), flow cone(F-C) and mini slump(M-S). A viscometer also measures the rheology coefficients to secure faithful numerical data. Firstly, series I examines cement paste, affected by several cement products and mineral admixture types in the range of W/B 40%, ordinary fluidity, and W/B 30%, high fluidity. In this series, the three types of cement product depended on companies, are randomly used and the mineral admixture, such as fly ash, blast furnace slag and silica fume, are incorporated in the cement paste, in response to the ratio of 10, 20, to 30%, respectively. In addition, series II studies various chemical admixture types, affecting the cement paste. This series is carried out with manufacturing companies and component types in the range of W/C 30%, high fluidity. For the manufacturing companies, randomly four products are used and for the component types, polycaboxylate, melamine, naphthalene and lignosulfonate type are chosen. Test results showed that in the fluidity test of cement paste considering various types of blending factors, R-F exhibited similar tendency with F-C and M-S. In the analysis of consistency curves measured by viscometer, the fluidity evaluation method using flow test apparatuses was significantly effective, except for the some of the low fluidity specimens. In conclusion of this study, R-F was the most convenient, faithful and effective fluidity evaluation method of cement paste.