• Title/Summary/Keyword: Missing sensor data

Search Result 52, Processing Time 0.034 seconds

Deep learning-based recovery method for missing structural temperature data using LSTM network

  • Liu, Hao;Ding, You-Liang;Zhao, Han-Wei;Wang, Man-Ya;Geng, Fang-Fang
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.109-124
    • /
    • 2020
  • Benefiting from the massive monitoring data collected by the Structural health monitoring (SHM) system, scholars can grasp the complex environmental effects and structural state during structure operation. However, the monitoring data is often missing due to sensor faults and other reasons. It is necessary to study the recovery method of missing monitoring data. Taking the structural temperature monitoring data of Nanjing Dashengguan Yangtze River Bridge as an example, the long short-term memory (LSTM) network-based recovery method for missing structural temperature data is proposed in this paper. Firstly, the prediction results of temperature data using LSTM network, support vector machine (SVM), and wavelet neural network (WNN) are compared to verify the accuracy advantage of LSTM network in predicting time series data (such as structural temperature). Secondly, the application of LSTM network in the recovery of missing structural temperature data is discussed in detail. The results show that: the LSTM network can effectively recover the missing structural temperature data; incorporating more intact sensor data as input will further improve the recovery effect of missing data; selecting the sensor data which has a higher correlation coefficient with the data we want to recover as the input can achieve higher accuracy.

A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis

  • Ren, Xiaojun;Sug, HyonTai;Lee, HoonJae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.

Recovering missing data transmitted from a wireless sensor node for vibration-based bridge health monitoring

  • Kim, C.W.;Kawatani, M.;Ozaki, R.;Makihata, N.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • This paper presents recovering of missing vibration data of a bridge transmitted from wireless sensors. Kalman filter algorithm is adopted to reconstruct the missing data analytically. Validity of the analytical approach is examined through a field experiment of a bridge. Observations demonstrate that, even a part of recovered acceleration responses is underestimated in comparison with those responses taken from cabled sensors, dominant frequencies taken from the reconstructed data are comparable with those from cabled sensors.

Detection and Correction Method of Erroneous Data Using Quantile Pattern and LSTM

  • Hwang, Chulhyun;Kim, Hosung;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.242-247
    • /
    • 2018
  • The data of K-Water waterworks is collected from various sensors and used as basic data for the operation and analysis of various devices. In this way, the importance of the sensor data is very high, but it contains misleading data due to the characteristics of the sensor in the external environment. However, the cleansing method for the missing data is concentrated on the prediction of the missing data, so the research on the detection and prediction method of the missing data is poor. This is a study to detect wrong data by converting collected data into quintiles and patterning them. It is confirmed that the accuracy of detecting false data intentionally generated from real data is higher than that of the conventional method in all cases. Future research we will prove the proposed system's efficiency and accuracy in various environments.

Bridge Health Monitoring with Consideration of Environmental Effects

  • Kim, Yuhee;Kim, Hyunsoo;Shin, Soobong;Park, Jong-Chil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.648-660
    • /
    • 2012
  • Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposes a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable-stayed bridge.

Symptom Pattern Classification using Neural Networks in the Ubiquitous Healthcare Environment with Missing Values (손실 값을 갖는 유비쿼터스 헬스케어 환경에서 신경망을 이용한 에이전트 기반 증상 패턴 분류)

  • Salvo, Michael Angelo G.;Lee, Jae-Wan;Lee, Mal-Rey
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.129-142
    • /
    • 2010
  • The ubiquitous healthcare environment is one of the systems that benefit from wireless sensor network. But one of the challenges with wireless sensor network is its high loss rates when transmitting data. Data from the biosensors may not reach the base stations which can result in missing values. This paper proposes the Health Monitor Agent (HMA) to gather data from the base stations, predict missing values, classify symptom patterns into medical conditions, and take appropriate action in case of emergency. This agent is applied in the Ubiquitous Healthcare Environment and uses data from the biosensors and from the patient’s medical history as symptom patterns to recognize medical conditions. In the event of missing data, the HMA uses a predictive algorithm to fill missing values in the symptom patterns before classification. Simulation results show that the predictive algorithm using the HMA makes classification of the symptom patterns more accurate than other methods.

Development of Missing Item Detection and Management System under Cell Type Packaging Processes (Cell 방식 포장공정에서의 Missing Item 검사 및 관리 시스템 개발)

  • Kim, Hyeon-Woo;Choi, Hyun-Eui;An, Ho-Gyun;Yoon, Tae-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.344-346
    • /
    • 2009
  • Cell type packaging line is more suitable for the products with various models and small quantities like mobile phone or mp3 player than conveyor type packaging line. Cell type packaging line is applicable to package various product models, but it can cause wrong product compositions and missing of items. So, automatic missing item detection system is needed. We designed an missing item detection system with a bar code reader, infrared sensors, and s digital camera. and also developed the programs for sensor data acquisition, image data processing, GUI, and data management.

  • PDF

Filling Analysis for Missing Turbidity Data in Han River Estuary (한강 하구부에서 결측된 탁도 자료의 보완)

  • Baek, Kyong-Oh;Cho, Hong-Yeon;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.289-298
    • /
    • 2006
  • Turbidity had been measured during five months In Han River estuary at three sites. In this process, missing data occurred due to gauge imitation of the turbidity sensor. A filling method for the missing turbidity data was newly developed in this study. Under the assumption of the time series data with unique period and different amplitudes, the new method can fill the missing data based on the area ratio of each cycle. And the new method was verified through the data set having no missing data. There were little differences between gross area of the original data and that of the revised data by the new method though values of peak were underestimated. As a result, missing turbidity data observed at Han River estuary could be appropriately filled using the new filling method.

Contact-Type Ball Tracking Sensor Robust to Impulsive Measurement Noises for Low-cost Ball-and-beam Systems (임펄스 측정잡음에 강인한 저가형 볼앤빔 시스템의 접촉식 볼 추적센서 개발)

  • Jang, Joo Young;Lee, Jaseung;Yoon, Hansol;Ra, Won-Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1136-1141
    • /
    • 2014
  • This paper proposes a new contact type ball tracking sensor to improve the control performance of a low cost ball-and-beam system. It is well-known that the impulsive measurement noise contained in ball position measurement is one of the factors which severely degrades the ball-and-beam control performance. The impulsive ball position measurement noises often appear under the sporadical ball floating on the beam. This fact motivates us to devise a simple analog preprocessing circuit to determine whether the ball loses the contact or not. Once the abnormal ball position measurement is detected, the design problem of the ball tracking sensor can be cast into the typical state estimation problem with missing data. In order to tackle the real-time implementation issue, a steady-state Kalman filter is applied to the problem. Through the experimental results, the usefulness of the proposed scheme is demonstrated.

A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets

  • Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.115-129
    • /
    • 2022
  • Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.