• Title/Summary/Keyword: Mixed Methanotrophs

Search Result 6, Processing Time 0.024 seconds

Effect of Ammonium Chloride on the Mixed Methanotrophs Species Composition and Methanol Metabolism (염화암모늄 영향에 따른 혼합종 메탄산화균의 종조성 변화 및 메탄올 대사 특성)

  • Kim, I Tae;Yoon, Younghan
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.27-42
    • /
    • 2018
  • This study analyzed the utility of ammonium chloride ($NH_4Cl$) as a nitrogen source for methanotroph communities. When cultured in nitrate mineral salt (NMS) medium, the methanotroph community we identified four families, seven genera, and 16 type I and type II species of methanotrophs. Among species in the Methylobacter genus, Methylobacter marinus could be actively cultured in NMS medium without NaCl addition. Following the addition of 25 mM $NH_4Cl$, the numbers of the type I genera Methylomonas, Methylococcus, and Methylobacter were increased, whereas the numbers of the type II genera Methylocystis and Methylosinus were decreased after 5 days. In methanotroph communities, certain concentrations of $NH_4Cl$ affected methane consumption and growth of methanotrophs at the community level. $NH_4Cl$ caused a considerable decrease in the methane consumption rate and the expression of soluble methane monooxygenases (sMMOs) but did not inhibit the growth of Methylomonas methanica expressing sMMO. These results could be attributed to competitive antagonism of MMOs due to their direct involvement in ammonia oxidation.

Effect of Tobermolite, Perlite and Polyurethane Packing Materials on Methanotrophic Activity (메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향)

  • Jeong, So-Yeon;Yoon, Hee-Young;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.215-220
    • /
    • 2013
  • Biofilters for the removal of methane using tobermolite, perlite and polyurethane as packing materials have been undergoing recent development. The effects of these packing materials on methane oxidation activity were evaluated in this study. Mixed methanotrophs (consortia A, B, C and D) from wetland and landfill soils were used as the inoculum sources. The influences of packing materials, consisting of tobermolite, perlite, and polyurethane, on the methane oxidation rate and methanotrophic bio-mass, were estimated. When perlite was added into the methanotrophic cultures, the methane oxidation rate was more than twice that of the control (without packing materials), and the methanotrophic biomass increased more than 10 fold. The ratio of methanotrophic bacteria to total bacteria under with tobermolite packing material was higher than the control and the other packing materials, indicating that tobermolite can serve as a specific packing material where dominance of methanotrophs is desired. Therefore, perlite and tobermolite provide habitats which increase the activity of methanotrophic bacteria, and these packing materials are promising for use in methane oxidation processes.

Initial Condition of Methanotrophic Consortium Biofilm Reactor(MCBR) for Trichloroethylene Degradation (Trichloroethylene 분해를 위한 혼합 메탄자화균 생물막 반응기의 초기 조건)

  • Lee, Moo-Yeal;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.971-980
    • /
    • 2000
  • Mixed methanotrophs (MM) secreting soluble methane monooxygenase(sMMO) were immobilized on celite R-635 to degrade trichloroethylene(TCE) in methanotrophic consortium biofilm reactor(MCBR) system. Further neutralization of celite R-635 was not needed for immobilization because effluent pH was stabilized at neutral after 4 hour washing. It took 130 days to develop biofilm on celite R-635 and the color of the celite changed gradually from white to red. After biofilm developed, influent methane and oxygen were decreased from 2.5~4 and 8~10 ppm to 0.5~1 and 1~2 ppm, respectively, With influent 2 ppm of TCE and 10 hours of retention time, 79.9% of TCE was degraded in the MCBR system.

  • PDF

Isolation and Cultivation of Methanotrophic Consortium for Trichloroethylene Degradation (Trichloroethylene(TCE)의 분해를 위한 메탄자화균총의 분리 및 배양)

  • 이무열;신현재;염상필;양지원
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.483-490
    • /
    • 1998
  • Two unidentified methanotrophic strains (MM-white and MM-red) secreting soluble methane monooxygenase (sMMO) involved in thrichloroethylene biodegradation have been isolated from mixed methanotrophic consortium (MM) around Taejon area. Subsequently four methanotrophic strains were isolated from MM and named according to their color; white (MS-white), yellow (MS-yellow), pink (MS-pink) and reddish brown (MS-rbrown). All strains except MS-yellow which can take glucose as well as methane, metabolized methane as a sole carbon source. They all showed symbiotic behavior when methane was used as the sole carbon source. Optimum conditions of cell growth for MM were pH of 6.8 - 7.2, temperature of 29 - 32$^{\circ}C$, and gas flow rate of 6 (for methane), 40 (for air), and 4 ml/min (for carbon dioxide). The sMMO activity was expressed as naphthalene oxidation rate (${\mu}$mol/ mg protein/ hr). The sMMO activity for MM grown in flask culture with 1 ${\mu}$M of CuSO4 was 36, while it was 61 without copper. The activity for MM grown in the fermentor without CuSO4 was 1077, but is was 197 after reaction with 5 ppm of TCE. The methanotrophs showed significantly high sMMO activity despite the presence of 1 ${\mu}$M of CuSO4, although most of other strains already known could not express sMMO activity under this condition.

  • PDF

Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option

  • Lee, Kwanhyoung;Choi, Oh Kyung;Song, Ji Hyun;Lee, Jae Woo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Methanotrophic denitrification under a non-aerated condition (without external supply of oxygen or air) was investigated in a bioreactor coupled with a membrane diffuser. Batch experiment demonstrated that both methane consumption and nitrogen production rates were not high in the absence of oxygen, but most of the nitrate was reduced into $N_2$ with 88% recovery efficiency. The methane utilized for nitrate reduction was determined at 1.63 mmol $CH_4$/mmol $NO_3{^-}$-N, which was 2.6 times higher than the theoretical value. In spite of no oxygen supply, methanotrophic denitrification was well performed in the bioreactor, due to enhanced mass transfer of the methane by the membrane diffuser and utilization of oxygen remaining in the influent. The denitrification efficiency and specific denitrification rate were 47% and 1.69 mg $NO_3{^-}-N/g\;VSS{\cdot}hr$, respectively, which were slightly lower than for methanotrophic denitrification under an aerobic condition. The average concentration of total organic carbon in the effluent was as low as 2.45 mg/L, which indicates that it can be applicable as a post-denitrification method for the reclamation of secondary wastewater effluent. The dominant fatty acid methyl ester of mixed culture in the bioreactor was $C_{16:1{\omega}7c}$ and $C_{18:1{\omega}7c}$, which was predominantly found in type I and II methanotrophs, respectively. This study presents the potential of methanotrophic denitrification without externally excess oxygen supply as a post-denitrification option for various water treatment or reclamation.

Factors of Trichloroethylene Degradation by Methanotrophic Consortium Biofilm Reactor(MCBR) (혼합 메탄자화균 생물막 반응기에 의한 Trichloroethylene 분해의 영향 인자)

  • Lee, Moo-Yeal;Cho, Hyun-Jeong;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.991-1000
    • /
    • 2000
  • Methanotrophic consortium utilizing methane as the primary carbon source and secreting soluble methane monooxygenase (sMMO) was immobilized on celite R-635 to continuously treat a wastewater containing trichloroethylene (TCE). With influent 2 ppm of TCE. 80.4 and 84.5% of TCE was degraded in 6 and 20 hour of hydraulic retention time (HRT). respectively. and the removal efficiency of TCE was increased with an increase in HRT in methanotrophic consortium biofilm reactor (MCBR). With influent 5 ppm of TCE and 10 hour of HRT. average efficiency of TCE removal was decreased in initial stage. but gradually increased to 81%. TCE was degraded to 88.5 and 96.5% with 10 and 15 hour of HRT. respectively. when methane was supplied alternately with continuous oxygen supply at influent 5 ppm of TCE. The efficiency of TCE degradation was decreased probably because oxidation reaction of methane was proceeded slowly on MMO. when high concentration of methane was supplied with depletion of oxygen. As results of the pilot-scale study. biodegradation of TCE by MCBR system might be feasible at full-scale operation.

  • PDF